To Bake or Not to Bake: Examining the Impact of Waiving PCB Pre-Baking Prior to Assembly


Reading time ( words)

I’ll always remember the summer of 2004 as the “Summer of Lead-Free.”  Finally, Pb-free circuit boards were going into standard production mode. Assemblers focused the majority of their efforts (often at my behest) on final finish and proper laminate selection. What none of us saw coming, however, was the rash of delamination that would burn the entire industry during that long, hot lead-free summer. 

After a good amount of research, Isola came up with a Lead-Free PCB Fabrication and Assembly Guideline that outlined various steps in the PCB fabrication and assembly processes that are critical to successful lead-free PCB assemblies. The most prominent process step that was added in this guideline is baking—during fabrication and, most critically, just prior to assembly.  The goal of baking is simply to drive moisture out of the PCB.

Moisture plays a critical role in lead-free PCB assembly. Therefore, it is important to discern the specifications of your base laminate. One knee-jerk reaction of North American PCB users was to specify what they believed to be the highest end laminates, those that qualify under IPC 4101/126 and /129 slash sheets. These are typically phenolic-cured materials, which have much higher thermal properties in terms of glass transition temperature (Tg) and decomposition temperature (Td) that are required to survive lead-free assembly without via failure.

Unfortunately, other properties of the laminate and assembly temperatures create a perfect storm for reliability failures. These include: moisture absorption, interlaminate adhesion strength, and water vapor pressure at lead-free assembly temperatures.

 

Moisture Absorption

Moisture absorption of phenolic materials is more than 2x as compared to traditional FR-4 materials that qualify under IPC 4101/21. In the early days, the technical data sheets used a 0.028" thickness core material for moisture absorption measurement. Based on this test vehicle, phenolic laminates showed moisture absorption of 0.45%; comparatively standard FR-4 laminates scored a 0.20% rate of moisture absorption. Over time, I think someone got wise and changed the test vehicle to a 0.059" thickness core, thereby increasing the denominator of the weight loss calculation. This resulted in a moisture absorption rate of 0.20%, matching the rate of standard FR-4 laminate.

To read this entire article, which appeared in the November 2016 issue of SMT Magazine, click here.

Share

Print


Suggested Items

Conformal Coatings

08/01/2019 | Nolan Johnson, I-Connect007
While conformal coatings may have been something of an afterthought at the front of the design process, that can no longer be the case. Conformal coatings are now a critical part of any board assembly that might be subjected to challenging conditions. But coatings can also contribute to increased mean time between failure in any conditions, even environmentally controlled environments.

How Do I Get Smart With IPC CFX? (Part 1)

07/30/2019 | Michael Ford, Aegis Software Corp.
Today's assembly factories are seeing the biggest challenge to face the industry in a generation, called by many the next industrial revolution. However, in essence, the challenge is a simple extrapolation of trends that have been occurring and increasing in assembly manufacturing for decades. In Part 1 of this two-part article, Michael Ford writes about the history behind the drive for automation in the SMT assembly industry and where CFX fits in.

Clean vs. No-clean Solder Process

07/03/2019 | Russell Poppe, JJS Manufacturing
Although IPC suggests clear guidelines, agreeing on the cleanliness (or otherwise) of a PCB assembly can often be a subjective and even contentious subject within the electronics manufacturing industry. If you’ve chosen to outsource your assemblies, how do you decide what to specify to your EMS partner? Find out here.



Copyright © 2019 I-Connect007. All rights reserved.