Enabling an Intelligent Supply Chain for Electronics Manufacturing


Reading time ( words)

The first three industrial revolutions came about because of mechanization, electricity and IT. Now, with the advent of the Industrial Internet of Things (IIoT) and services making their way into the manufacturing environment, we are seeing the arrival of a fourth industrial revolution, Industry 4.0.

In this future, businesses will need to establish global networks that incorporate their production facilities with associated machinery and warehousing systems in the shape of cyber-physical systems (CPS). This new manufacturing environment will be comprised of smart machines, material storage systems and production facilities capable of autonomously exchanging information, triggering actions and control ling each other independently. This will also require a change in how production systems are managed and interact. Data must flow freely between one machine or system to another, unburdened from protocols or locked in standards. This will require that fundamental improvements be made to the industrial processes involved in manufacturing, engineering, material usage, supply chain and life cycle management. Many suppliers are already proposing solutions to enable the smart factories that are already beginning to appear to use some completely new approaches in production, which enables customizability. The smart products produced at these facilities will be uniquely identifiable; they may be located at all times and know their own production history and current status; they must be able to generate alternative routings to be able to achieve their target state/shape/functionality.

Additionally, Industry 4.0 will address many of the environmental issues facing the world today, such as resource and energy efficiency. Industry 4.0 will provide a vehicle that enables continuous resource productivity and energy efficiency gains to be delivered across the entire supply chain.

These embedded manufacturing systems will be vertically networked within the factories’ own business processes and enterprises while simultaneously being horizontally connected to the broader external supply chain that can be managed in real time—from the time an order is placed by a customer through outbound logistics to deliver the product. This will require that all aspects of the current MRP and MES systems be evaluated to understand how they can accommodate this new manufacturing paradigm.

The Connected Factory

Running a typical EMS operation requires the use of many disparate software platforms. Business processes in manufacturing are currently often still static and implemented through extremely inflexible software systems. Much of the capital investments made over the years to support the manufacturing operations cannot simply be ripped out or replaced with newer, more flexible/service-oriented applications. It therefore becomes essential to be able to integrate new technologies into older ones (or vice versa), with the older systems needing to be upgraded or enhanced with real-time capabilities. The magnitude of the challenges involved become quite evident once you look at the landscape of the all the different systems required to run a typical electronics manufacturing facility (Figure 2).

From the figure, it becomes obvious how challenging the task is to interconnect all the systems in such a way that data can easily be shared both vertically and horizontally across the factory infrastructure as you deal with not only engineering based tools but also all the planning and supply chain systems and the physical hardware producing the products.

To read the full version of this article which appeared in the May 2018 issue of SMT007 Magazine, click here.

Share


Suggested Items

Reflow Perspectives to Flex Circuit Assemblies

07/13/2018 | Stephen Las Marias, I-Connect007
At the recent NEPCON China 2018 event in Shanghai, I spoke with Ralf Wagenfuehr, plant manager at Rehm Thermal Systems, to gain insight into flex circuit assembly, and the challenges of reflow soldering. He also speaks about the need for industry forums focused on soldering flex printed circuits.

RTW NEPCON CHINA: Rehm Discusses Reflow Strategies to Reduce Voiding

05/10/2018 | Real Time with... NEPCON China
At the recent NEPCON China 2018 event in Shanghai, Ralf Wagenfuehr, plant manager at Rehm Thermal Systems in China, speaks with I-Connect007’s Stephen Las Marias about their latest advancements in reflow oven technology, as well as on strategies to reduce voiding.

Stencil Printing Techniques for Challenging Heterogeneous Assembly Applications

04/16/2018 | Mark Whitmore and Jeff Schake, ASM Assembly Systems
A new generation of near microscopic size SMT chip capacitors has appeared in the market, known as either 0201 or 008004. This article investigates and characterizes the stencil printing process for compatibility with M0201 capacitor assembly. Effects of circuit board quality, stencil thickness, and stencil nano-coating are evaluated against solder paste volume transfer efficiency and raw-volume print distribution.



Copyright © 2018 I-Connect007. All rights reserved.