Enabling an Intelligent Supply Chain for Electronics Manufacturing


Reading time ( words)

The first three industrial revolutions came about because of mechanization, electricity and IT. Now, with the advent of the Industrial Internet of Things (IIoT) and services making their way into the manufacturing environment, we are seeing the arrival of a fourth industrial revolution, Industry 4.0.

In this future, businesses will need to establish global networks that incorporate their production facilities with associated machinery and warehousing systems in the shape of cyber-physical systems (CPS). This new manufacturing environment will be comprised of smart machines, material storage systems and production facilities capable of autonomously exchanging information, triggering actions and control ling each other independently. This will also require a change in how production systems are managed and interact. Data must flow freely between one machine or system to another, unburdened from protocols or locked in standards. This will require that fundamental improvements be made to the industrial processes involved in manufacturing, engineering, material usage, supply chain and life cycle management. Many suppliers are already proposing solutions to enable the smart factories that are already beginning to appear to use some completely new approaches in production, which enables customizability. The smart products produced at these facilities will be uniquely identifiable; they may be located at all times and know their own production history and current status; they must be able to generate alternative routings to be able to achieve their target state/shape/functionality.

Additionally, Industry 4.0 will address many of the environmental issues facing the world today, such as resource and energy efficiency. Industry 4.0 will provide a vehicle that enables continuous resource productivity and energy efficiency gains to be delivered across the entire supply chain.

These embedded manufacturing systems will be vertically networked within the factories’ own business processes and enterprises while simultaneously being horizontally connected to the broader external supply chain that can be managed in real time—from the time an order is placed by a customer through outbound logistics to deliver the product. This will require that all aspects of the current MRP and MES systems be evaluated to understand how they can accommodate this new manufacturing paradigm.

The Connected Factory

Running a typical EMS operation requires the use of many disparate software platforms. Business processes in manufacturing are currently often still static and implemented through extremely inflexible software systems. Much of the capital investments made over the years to support the manufacturing operations cannot simply be ripped out or replaced with newer, more flexible/service-oriented applications. It therefore becomes essential to be able to integrate new technologies into older ones (or vice versa), with the older systems needing to be upgraded or enhanced with real-time capabilities. The magnitude of the challenges involved become quite evident once you look at the landscape of the all the different systems required to run a typical electronics manufacturing facility (Figure 2).

From the figure, it becomes obvious how challenging the task is to interconnect all the systems in such a way that data can easily be shared both vertically and horizontally across the factory infrastructure as you deal with not only engineering based tools but also all the planning and supply chain systems and the physical hardware producing the products.

To read the full version of this article which appeared in the May 2018 issue of SMT007 Magazine, click here.

Share

Print


Suggested Items

AOI Programs with a Magic Click

12/12/2018 | Jens Kokott and Matthias Muller, Goepel electronic
Production runs of 10–1,000 assemblies are everyday life for an EMS provider. But what if important staff are on vacation, and component deliveries are very much delayed? And then the customer is determined to have AOI, but the layout of the assembly is highly customized, making it virtually impossible to use complete library entries. Here's how AOI programs can help you in these scenarios.

RTW NEPCON South China: Rehm Sees Growing Demand for Vacuum Soldering

09/28/2018 | Real Time With... NEPCON South China
Ralf Wagenfuehr, plant manager of Rehm Thermal Systems (Dongguan) Ltd, speaks with I-Connect007’s Edy Yu about the developments in the company’s convection reflow soldering system, which features a vacuum module, aimed at addressing the increasing demand for vacuum soldering. He also discusses their software developments, as well as how they are helping their customers toward their Industry 4.0 journey.

Reflow Perspectives to Flex Circuit Assemblies

07/13/2018 | Stephen Las Marias, I-Connect007
At the recent NEPCON China 2018 event in Shanghai, I spoke with Ralf Wagenfuehr, plant manager at Rehm Thermal Systems, to gain insight into flex circuit assembly, and the challenges of reflow soldering. He also speaks about the need for industry forums focused on soldering flex printed circuits.



Copyright © 2019 I-Connect007. All rights reserved.