Enabling an Intelligent Supply Chain for Electronics Manufacturing


Reading time ( words)

The first three industrial revolutions came about because of mechanization, electricity and IT. Now, with the advent of the Industrial Internet of Things (IIoT) and services making their way into the manufacturing environment, we are seeing the arrival of a fourth industrial revolution, Industry 4.0.

In this future, businesses will need to establish global networks that incorporate their production facilities with associated machinery and warehousing systems in the shape of cyber-physical systems (CPS). This new manufacturing environment will be comprised of smart machines, material storage systems and production facilities capable of autonomously exchanging information, triggering actions and control ling each other independently. This will also require a change in how production systems are managed and interact. Data must flow freely between one machine or system to another, unburdened from protocols or locked in standards. This will require that fundamental improvements be made to the industrial processes involved in manufacturing, engineering, material usage, supply chain and life cycle management. Many suppliers are already proposing solutions to enable the smart factories that are already beginning to appear to use some completely new approaches in production, which enables customizability. The smart products produced at these facilities will be uniquely identifiable; they may be located at all times and know their own production history and current status; they must be able to generate alternative routings to be able to achieve their target state/shape/functionality.

Additionally, Industry 4.0 will address many of the environmental issues facing the world today, such as resource and energy efficiency. Industry 4.0 will provide a vehicle that enables continuous resource productivity and energy efficiency gains to be delivered across the entire supply chain.

These embedded manufacturing systems will be vertically networked within the factories’ own business processes and enterprises while simultaneously being horizontally connected to the broader external supply chain that can be managed in real time—from the time an order is placed by a customer through outbound logistics to deliver the product. This will require that all aspects of the current MRP and MES systems be evaluated to understand how they can accommodate this new manufacturing paradigm.

The Connected Factory

Running a typical EMS operation requires the use of many disparate software platforms. Business processes in manufacturing are currently often still static and implemented through extremely inflexible software systems. Much of the capital investments made over the years to support the manufacturing operations cannot simply be ripped out or replaced with newer, more flexible/service-oriented applications. It therefore becomes essential to be able to integrate new technologies into older ones (or vice versa), with the older systems needing to be upgraded or enhanced with real-time capabilities. The magnitude of the challenges involved become quite evident once you look at the landscape of the all the different systems required to run a typical electronics manufacturing facility (Figure 2).

From the figure, it becomes obvious how challenging the task is to interconnect all the systems in such a way that data can easily be shared both vertically and horizontally across the factory infrastructure as you deal with not only engineering based tools but also all the planning and supply chain systems and the physical hardware producing the products.

To read the full version of this article which appeared in the May 2018 issue of SMT007 Magazine, click here.

Share

Print


Suggested Items

Automation and the Smart Factory: Introduction to Industry 4.0

03/20/2019 | Happy Holden, I-Connect007
The characteristics of successful automation application in manufacturing depend on how well business and technical management understand and promote the strategies, tactics, and philosophies used in modern manufacturing. This article briefly outlines the background of computer-integrated manufacturing (CIM) and its evolution to Industry 4.0 and smart factories.

RTW IPC APEX EXPO 2019: Standards Updates: IPC-7093 & IPC-7530

03/13/2019 | Real Time with...IPC
Ray Prasad, IPC Hall of Famer and chairman for multiple committees, gives Guest Editor Joe Fjelstad an update on two IPC standards: IPC-7093 on bottom-termination components (BTCs), and IPC-7530 progress with reflow characterization. Prasad talks about the many challenges in dealing with BTCs, including circuit/board design, manufacturing, voiding, connections (or lack thereof), warpage, and reliability. He also speaks about no-clean flux and its challenges.

Nate Ramanathan on Choosing a Prototype Partner and Production Supplier

03/12/2019 | Nolan Johnson, I-Connect007
AEye, a developer of perception systems for autonomous vehicles, has transitioned from initial engineering development into the final design for production and manufacturing of very large quantities. In an interview with I-Connect007, Nate Ramanathan, VP of operations at AEye, speaks about the criteria and his perspective on selecting vendors.



Copyright © 2019 I-Connect007. All rights reserved.