3D Printing and Medical Electronics: A Disruptive Beneficial Technology

Reading time ( words)

It seems that every few months, we hear about new advances in disruptive technologies. As these technologies become accepted to a greater degree, there are additional areas to research. One of the areas we have been following is additive/semi-additive 3D manufacturing with PCB fabrication as the main focus.

However, another innovative area is 3D-printed manufactured devices, replacement body parts, and medications in the medical industry. We are seeing significant advances and increased uses for 3D manufacturing in medicine—many more than 3D-printed and conductive circuits on device structural components (e.g., conductors printed on a device wall or structural angle, etc.). There is enough movement in this area that 3D additive fabrication in medicine—including but not limited to 3D-printed circuits—has become its own topic, and one that we will be watching and continuing to cover.


First, let’s take a look at the present status of this segment to set a foundation for future coverage, especially as we are about to enter the high-tech trade show season where new advances will be introduced. Since we are discussing 3D-printed devices that are used on or in the human body, let’s review the Food and Drug Administration (FDA) definition.

“3D printing is a type of additive manufacturing. There are several types of additive manufacturing, but the terms ‘3D printing’ and ‘additive manufacturing’ are often used interchangeably. Here, we will refer to both as 3D printing for simplicity. 3D printing is a process that creates a three-dimensional object by building successive layers of raw material. Each new layer is attached to the previous one until the object is complete. Objects are produced from a digital 3D file, such as a computer-aided design (CAD) drawing or a magnetic resonance image (MRI). The flexibility of 3D printing allows designers to make changes easily without the need to set up additional equipment or tools. It also enables manufacturers to create devices matched to a patient’s anatomy (patient-specific devices) or devices with very complex internal structures. These capabilities have sparked huge interest in the 3D printing of medical devices and other products, including food, household items, and automotive parts.”

3Dprinting-Fig1-DanF-Nov2018.jpgFigure 1: 3D-printed dentures.

As those of you who have followed our coverage of disruptive technologies know, 3D additive technology has transformed many industry segments already, which includes significant changes to the medical and dental industries. 3D printing has been used to manufacture dentures and other oral implants for years but is also proving to be useful in other areas (Figure 1). For example, I recently chose to have a tooth replaced with an implant. In the past, it was necessary for the oral surgeon to take numerous X-rays from differing angles, combine them, and use them to measure and create the specifications for the implant fabricator. This time, I only had to do a single 360° 3D image that allowed the surgeon to design the perfect implant at the exact size and shape needed with CAD. The entire process took 15 minutes. It is no wonder that fast, high-quality 3D scanning has replaced X-rays as the preferred method of gathering the necessary data for so many areas of medicine.

Beyond dental devices, 3D printing is also being used to manufacture an entirely new generation of advanced medical implants that can be customized for individual patients’ bodies. It is also starting to become commonly used in numerous areas, such as surgery planning and patient consultations. In addition, as we have seen at the last few consumer electronics shows (CESs), 3D-printed manufacturing technology is revolutionizing the prosthetic and assistive devices segments. 3D-printed manufacturing is now providing access to reasonably priced, highly customized and optimized prosthetics for individual needs on a case-by-case basis (Figure 2).

3Dprinting-Fig2-DanF-Nov2018.jpgFigure 2: 3D prosthetic.

According to a new market report from London-based industrial research firm Future Market Insights, the unexpected growth of the 3D-printed medical devices market is likely to be a fixture for some time to come. The report notes that medical communities worldwide are adopting 3D printing technology, and the use of 3D-printed devices at a consistent and rapid pace. It adds that the technology is leading to significantly improved quality of care for patients and is capable of reducing the average procedure time for most surgical applications.

This new industry benefits patients, and it also provides great improvements for doctors and hospitals by lowering the strain placed on already overworked staff. Overall, 3D printing leads to lower costs, which benefits those who would never have been able to afford traditionally manufactured devices. Now, people can afford and use greatly improved devices—such as my dental implant—rather than having to have a false tooth like my parents’ generation had to endure.

To read the full article, which appeared in the November 2018 issue of SMT007 Magazine, click here.



Suggested Items

How Digitalization Is Transforming the Electronics Manufacturing Industry

09/11/2019 | Neil Sharp, JJS Manufacturing
The rise of the "digital" supply network—such as the cloud, big data, 3D printing, augmented reality, or the internet of things (IoT)—promises to address issues such as increasing global competition, rising consumer expectations, and the increasingly complex patterns of consumer demand, by providing a greater level of transparency, innovation, and resiliency. And there is a growing belief among business strategists that the more digitalized our manufacturing supply chains can become, the greater our efficiency will be.

eSMART Factory Conference 2019, Day 1

09/02/2019 | Happy Holden, I-Connect007
The recent eSMART Factory Conference in June in Dearborn, Michigan, was the second annual conference on the smart factory. SMTA described it as "A technical conference with a focus on electronics manufacturing from software systems/processes to augmented reality and smart inspection." In this article, Happy Holden gives us the highlights of the conference.

Seven Key Steps to Selecting a New EMS Partner

08/14/2019 | Neil Sharp, JJS Manufacturing
Choosing to outsource your electronics manufacturing to an EMS provider requires careful planning and consideration. And even once you’ve made your decision, there may still be things that test you or that don’t go quite to plan. An experienced EMS partner has been there before; they understand the challenges, and they’ll be able to support you through the process to ensure you achieve your goals.

Copyright © 2019 I-Connect007. All rights reserved.