Tips & Tricks: Wave Solder Bridging


Reading time ( words)

Wave solder bridging is the most difficult defect to troubleshoot because it has a number of potential causes. The key is to understand the role of flux during wave contact—reducing the surface tension of the solder to reduce the tendency to bridge between pins as the board leaves the wave. Bridging occurs when the flux has been chemically depleted before exiting the wave. This can be a function of the flux and process.

With respect to flux, in general, fluxes with higher activity levels are more resistant to bridging. This means that no-clean fluxes can be more likely to result in bridging, especially with older formulations. Newer flux formulations are available that have higher levels of performance while still meeting the requirements of no-clean classification.

Regarding the process, the flux loading and total thermal input to the board are key factors. An inadequate amount of flux can result in flux exhaustion before wave exit. Excessively high thermal inputs can also lead to bridging with three factors to measure. Preheat temperature is the first, contact time on the wave is the second, and solder pot temperature is the third. The optimal values for each should be available on the data sheet for any flux, and they will be different for every flux formulation.

There are other reasons outside of flux and process that can lead to bridging. The design of masking pallets can cause bridging if there is inadequate clearance around the devices. The PCB layout can also cause bridging if rows of leads are unable to be processed through the wave in the proper orientation (orthogonally and not parallel to the wave). These factors may not be able to be overcome through process optimizations or flux selection.

Jason Fullerton is the customer technical support engineer at the Assembly Division of MacDermid Alpha Electronics Solutions.

Share

Print


Suggested Items

Optimizing Solder Paste Volume for Low-Temperature Reflow of BGA Packages

07/22/2019 | Keith Sweatman, Nihon Superior Co. Ltd
In this article, Keith Sweatman explains how the volume of low-melting-point alloy paste—which delivers the optimum proportion of retained ball alloy for a particular reflow temperature—can be determined by reference to the phase diagrams of the ball and paste alloys.

Practical Implementation of Assembly Processes for Low Melting Point Solder Pastes (Part 1)

07/16/2019 | Adam Murling, Miloš Lazić, and Don Wood, Indium Corporation; and Martin Anselm, Rochester Institute of Technology
Since 2006 and the implementation of the RoHS directive, the interest in bismuth-tin solder alloys—whose melting point around 140°C is very desirable because it allows for the use of lower temperature laminate materials and reduces thermal stress on sensitive components—has only increased as the industry has searched for Pb-free alternatives to the chosen standard, SAC305, which melts at considerably higher temperatures than the incumbent tin-lead alloys.

Surface Treatment Enabling Low-Temperature Soldering to Aluminum

07/15/2019 | Divyakant Kadiwala, Averatek Corporation
An increasingly popular method to meet the need for lower cost circuitry is the use of aluminum on polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low-cost LED lighting, and other single-layer circuits. However, both aluminum and PET have their own constraints and require special processing to make finished circuits.



Copyright © 2019 I-Connect007. All rights reserved.