Automated Conformal Coating of CCAs Using Polyurethane


Reading time ( words)

Abstract

The development of an automated circuit card assembly (CCA) conformal coating process using a low-outgassing polyurethane material was essential for meeting the increase in customer demand from 3,000 to 60,000 units per year. Low-outgassing polyurethane conformal coating is used for protection against humidity and tin whisker mitigation.

When increasing production throughput requirements, it is necessary to eliminate variation and increase production capacity by automating processes. Manual processes in manufacturing can lead to defects, increased variability, and additional manufacturing time.

To begin the process improvement of automating spraying a low-outgassing polyurethane conformal coating, several machine and material parameters were considered during the evaluation. A selective conformal coating machine was chosen and the following parameters were determined to be critical to the process: thinner-to-material ratio, atomizing air pressure, material syringe pressure, nozzle distance from the substrate, nozzle speed, material flow rate, number of coats, and curing requirements.

These parameters were verified by performing an adhesion by tape test per ASTM D3359-17 (Standard Test Methods for Rating Adhesion by Tape Test) in addition to verifying conformal coat thickness and defects per J-STD-001 (Joint Industry Standard Requirements for Soldered Electrical and Electronic Assemblies) requirements. Implementing a selective polyurethane conformal coating spraying process has increased capacity capabilities and eliminated variations induced from the manual process.

Background

In the manufacturing of Class 3 circuit card assemblies, conformal coating can be critical to the lifespan of the circuit card. For circuit cards to withstand environmental factors in the field they must be properly protected, which typically requires the use of conformal coating. Polyurethane conformal coating is commonly used throughout the industry, but typically, it is used in lower volume production. Tin whisker mitigation is one of the most common reasons to use a low-outgassing polyurethane material.

Adapting to increases in production can be difficult. An increase in customer demand from 3,000 to 60,000 units per year can create many challenges in a manufacturing environment. Currently, a low-outgassing polyurethane material is applied to the circuit card assemblies via manually spraying using an atomizing handheld air gun. With any manual process, there is significant variation in the outcome due to many variables involved; therefore, the process is difficult to control. This variation may be acceptable in low volume production, but for mass production, this method is unsustainable and unreliable. Automating the process is the best way to achieve zero defects, eliminate variation, and accommodate the strict production schedule.

To develop an automated-spraying process for this polyurethane material, there were many factors that had to be taken into consideration and many variables that required process controls (Figure 1). There are J-STD-001 requirements that must be met; polyurethane conformal coating must be 0.03–0.13mm (0.001–0.005 in.) [1]. No defects per IPCA-610 (Acceptability of Electronic Assemblies) are acceptable. There is also the need to meet the customer and drawing requirements. Additionally, strict material requirements, such as pot life and cure time, needed to be considered. All of these factors played a major role in automating the manual hand-spray process, and it was necessary to understand all of the material requirements and restrictions, customer requirements, and IPC requirements before beginning the evaluation of equipment and development of the process.

The entire conformal coating process was evaluated during this experiment, which includes more than just the spraying of polyurethane material onto the circuit cards. The first step of the process is the preparation of circuit card assemblies, which includes cleaning, baking, and masking any areas that are required to be free of conformal coating per the customer drawing requirements. The coating process also includes preparation of the material used for spraying; this may be a mixture of two or more parts that must be weighed and mixed properly. The next step is the spraying and curing of the material onto the circuit cards and coupons for thickness measurements. The final steps of the conformal coating process are the removal of the masking materials and touchup of the coating. Preparation of the substrates, correct mixture of the material, proper curing, and accurate thickness measurements are important variables that could affect the output of the conformal coat spraying process. Therefore, it was necessary to ensure proper controls had been established for all of these aspects of the conformal coating process.

To read the full article, which appeared in the August 2019 issue of SMT007 Magazine, click here.

Share




Suggested Items

Five-Star Reflow Recipes: Q&A With Rob Rowland

12/28/2022 | Andy Shaughnessy, I-Connect007
In this Q&A, Rob Rowland, director of engineering at Axiom Electronics, discusses his new IPC APEX EXPO Professional Development course, “Reflow Profiling Simplified,” on how to create a standardized methodology to accurately generate new reflow soldering profiles. Rob explains, “In this class, I’ll explain how I approached this work to help others develop similar methodologies for creating their own reflow soldering profiles. My presentation also includes the basic reflow profile recipes I have been using for the past 20 years.”

Essemtec: Manufacturing Moves In-house

12/28/2022 | Pete Starkey, I-Connect007
Pete Starkey talks with Kevin Domancich at Essemtec at electronica 2022 about the company integration within Nano Dimension and how the two companies have pioneered an exciting new end-to-end manufacturing solution that helps customers speed up production, cut costs, and keep their proprietary materials secure. In a world where time to market has become a priority consideration, this universal system has the potential to revolutionize the industry.

Excerpt: The Evolving PCB NPI Process, Chapter 2

11/30/2022 | I-Connect007 Editorial Team
Managing the supply chain for electronics manufacturing has always been challenging. About 70-80% of the cost of building an electronic product is for the parts, while the remaining cost is in the process to assemble and test the product. However, during the worldwide pandemic, the strain on the overall supply chain for any product has been stretched to the breaking point. When supply of toilet paper, hand towels, and sanitizer is disrupted and cannot be found on the grocery store shelves, one could imagine the challenges in a similarly disrupted supply chain of efficiently acquiring complex electronic components.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.