Practical Verification of Void Reduction Method for BTC Using Exposed Via-in-pad


Reading time ( words)

Abstract

Void reduction strategies used with different levels of success throughout the industry include managing reflow profile parameters, solder paste deposit volume and solder paste type, stencil aperture cut to different geometries, thermal pad geometries with and without solder mask webs, vacuum-assisted reflow, sweep stimulation of PCB substrate, use of solder preforms, tinning of the components pads before placement and reflow, I/O aperture design to overprint at the toe of the pad, and exposed via-in-pad [1–8]. The translation of these methods and their combinations for void control on the thermal pad of bottom-terminated components (BTCs) has been met with different levels of success in volume production.

The method explored in this article regards the use of exposed via-in-pad. A dedicated test vehicle was designed for two types of QFN components. The main variables accounted for were the component size, number of exposed vias in the thermal pad, via pitch, via size, and solder paste coverage. The responses sought in this experiment include a thermal pad void level and solder wicking down the via barrel with resulting solder protrusion on the opposite side of the PCB.

The results indicated that solder will wick down the exposed via-in-pad regardless of the via diameter and solder paste coverage. Despite this finding, there were no defects recorded like component tilting, skewing, opens, or solder bridging. Specific configurations attained voiding levels in the thermal pad below 25%; however, other configurations did show a void level for the thermal pad up to 50%. A discussion will be presented regarding the effect of the board thickness and the geometry of the via array on the thermal pad solder coverage and voiding level.

To read this entire article, which appeared in the November 2019 issue of SMT007 Magazine, click here.

Share




Suggested Items

How to Minimize Quoting Time and Increase Accuracy in EMS Production

03/30/2022 | Mark Laing, Siemens Digital Industries Software
New product introductions (NPIs) and customization have been increasing rapidly over the past few years—with the results that the already-small profit margins in electronics assembly are shrinking even further. Fifteen years ago, the PCB was the product. Today, most products are a system, with multiple PCBs, cables, and enclosures. Many manufacturers want to provide turn-key products that have multiple BOMs, making the assembly process even more complicated.

Catching Up With Nova Engineering

04/27/2021 | Dan Beaulieu, D.B. Management Group
When searching for companies to interview, I always look for something unique and that makes the company special. Truth be told, I am a collector of stories about good, well-run, unique companies that we can learn something from. Nova Engineering is one of those companies.

What Makes a Good Process Engineer?

03/03/2021 | Nolan Johnson, I-Connect007
Nolan Johnson recently spoke with Tuan Tran, director of customer solutions at Green Circuits, about what makes a successful process engineer. They also discuss a typical day in the life of a process engineer—from pre-manufacturing through post-DFM, for process improvement. As Tuan points out, there are a variety of paths to becoming a great process engineer.



Copyright © 2022 I-Connect007. All rights reserved.