Excerpt: The Printed Circuit Assembler’s Guide to… Smart Data

Reading time ( words)

The following excerpt is from The Printed Circuit Assembler's Guide to...™ Smart Data: Using Data to Improve Manufacturing book.

Whenever we discuss data, keep in mind that people have been collecting data, verifying it, and translating it into reports for a long time. And if data is collected and processes are changed automatically, people still will be interpreting and verifying the accuracy of the data, creating reports, making recommendations, solving problems, tweaking, improving, and innovating. Whatever data collection system is used, any effort to digitalize needs to engage and empower the production team at the factory. Their role is to attend to the manufacturing process but also to act as the front line of communications and control.

When operations are not performing as expected, they need to be able to:

  1. Act as the first line of issue containment so that they can minimize the effect of the problem on the final product or process through problem-solving and corrective actions in real-time.
  2. Act as intelligence gatherers during escalation events when engineering is called to the work cell so that they can spend less of their time on data gathering and more on re-engineering for root-cause elimination to remove the possibility for any undesired condition to reappear.

To help your factory take the next steps in the journey to digitalization, in this book, we’re going to look at some of the major hurdles that your teams face in collecting manufacturing data that then will be useful—not only for improving processes but also for improving materials and supply chain management, tracing the sources of problems and defective or counterfeit parts, and providing trends analysis for business forecasting and reporting.

In our previous book The Printed Circuit Assembler’s Guide to… Advanced Manufacturing in the Digital Age, we looked at what needs to be done to create a smart factory that is able to collect data—including how to remove barriers in an organization, protect the data, and create a system for managing it.

In Chapter 1, we will look at the challenges of collecting good data and where collecting it makes sense for the factory and improving business. In Chapter 2, we will examine what makes data smart, meaning the difference between data on its own and analytics. In Chapter 3, we will cover how data can be distributed from the underlying infrastructure for external use. We also detail some of the tools available today to help you put these principles into practice and look at a real-world example of how companies are reaping the benefits of putting their data to good use with analytics.

The requirements for product quality and reliability contribute to the growing need for meaningful analytics in manufacturing. With growing demands from quality-sensitive industries—such as aerospace, automotive, smartphones, and medical—manufacturers need to ensure their factory operations work properly. Analyzing data simply is not enough. Company managers need to use analytics to create knowledge that can positively affect manufacturing.

Today, with internet of things (IoT) technology entering the manufacturing world, factory managers can take their efficiency and waste-reduction efforts to the next phase using big-data analytics. Advanced big-data analytics can help electronics manufacturers cope with the sheer number and complexity of production activities that influence yield, providing a granular approach to diagnosing and correcting process flaws.

Figure 0.1: Manufacturing intelligence enables Industry 4.0.

Advanced analytics refers to the application of statistics and other mathematical tools to business data to assess and improve practices. In manufacturing, operations managers can use advanced analytics to take a deep dive into historical process data, identify patterns and relationships among discrete process steps and inputs, and then optimize the factors that prove to have the greatest effect on yield.

With IoT applications gathering huge amounts of real-time, shop-floor data constantly, what the electronics manufacturing industry now needs are analytics solutions that can aggregate these isolated data sets and analyze them to reveal important insights. These insights can be leveraged to enable better decision-making and ultimately reduce cost and waste.

To download this free eBook, published by I-Connect007, click here.

To view the entire I-Connect007 eBook library, click here.

Other related content

I-Connect007 Column: Lean Digital Thread, from Sagi Reuven, Siemens Digital Industries Software





Suggested Items

Exploring High Density With Axiom

05/06/2022 | I-Connect007 Editorial Team
Nolan Johnson and Barry Matties talk with Axiom’s Rob Rowland and Kevin Bennett about the current high-density challenges facing EMS manufacturing. In this interview, Bennett and Rowland zero in on component packaging and feeder technology as critical areas in need of improvement.

The Reality of Regulated Manufacturing

04/12/2022 | Nolan Johnson, I-Connect007
Nolan Johnson speaks with Ryan Bonner, CEO of DEFCERT, about government regulations for data and cybersecurity. A key component of moving to a digital factory will be to ensure security of the data required to operate a digital factory, and most importantly, customer design data.

Dave Hillman on Living Your Passion

03/29/2022 | Barry Matties, I-Connect007
Barry Matties leads this engaging retrospective conversation with Dave Hillman, a Fellow, Materials and Process engineer at Collins Aerospace, who talks about mentorship, pandemic changes, and solder. “Soldering is soldering,” Dave says. “But how we do that keeps evolving in response to the new technologies and smaller packages.” What’s the key to his success and longevity? “Find your passion.” Here’s how he’s done it.

Copyright © 2022 I-Connect007. All rights reserved.