Mining for Metals Requires a Long View

Reading time ( words)

Nolan Johnson talks with Shaun Dykes, a 50-year expert in the mining industry. Dykes gives a concise primer on mining development, and the amount of time and effort required to develop and supply the mineral resources we depend upon for the manufacture of printed circuit boards. There are many factors that play into when and where a mine is developed—and what can prevent a mine from ever producing minerals.

Nolan Johnson: Shaun, what is your specific role and your background?

Shaun Dykes: I’m the president and CEO at American CuMO Mining Corp., and an engineer and geologist by background. I’ve been in the business for almost 50 years. I’ve been all over the world, looking at and worked on deposits in different regimes, governments, and bureaucracies from Canada, U.S., and Australia. I spent time in Russia and South America as well.

Johnson: Minerals and their role in the supply chain for finished metals has a great impact on my readers. They rely on the copper, tin, lead, and all the metals that go onto those fiberglass boards. In addition, there’s solder and the minerals involved in those formulations. Copper, of course, plays a central role; that seems to be a metal at the core of the dynamics going on.

What are some of the global supply and demand trends in your industry and how might that be affecting us in electronics manufacturing?

Dykes: Metals, especially now with all the new technologies, are appearing everywhere—your circuitry, desalination plants, batteries, even your drinking water. Every single metal is in strong demand. The supply is getting shorter and shorter, and as mines become older, the grades are dropping and that reduces the amount of metal available. It now takes about five times longer to permit a mine than it used to because of the new regulations and rules you must go through.

Even then, some mines just can’t go into production because they’re either too costly or the opposition is too strong, and you can’t get the permits to proceed. Right now, the supply is far less than the demand. Of course, that demand is increasing on a steady basis, year in, year out. That’s why you’re seeing the increase in metal prices.

Johnson: It sounds to me like any sort of domestic mining is under even stricter regulation, even while the demand is going up.

Dykes: Definitely. What we go through in the mining industry—some of it’s good, while some is red tape and just absolute garbage. But other parts are good for the environment to make sure that the old days of mining, where you just rape and pillage with no care for what was going on, is long gone. Now, when we look at developing new mines, one of the first things we look at is the environment—rare and endangered species, trees, and more, before we even start spending the hundreds of millions of dollars it takes to develop a mine.

Johnson: Hundreds of millions of dollars to develop a mine? In our space, to build a computer chip factory, a semiconductor factory, is hundreds of millions of dollars and four or five years before it’s producing. Is it comparable with a mine? If you decide to go forward, how quickly can you get a mine up and running?

Dykes: Well, it depends. From first boots on the ground, you’ve got to drill it and explore; for the larger scale mines, like the ones that supply your metals, it’s averaging close to 20 years.

Johnson: Twenty years to get a mine started?

Dykes: From when you’ve discovered and outlined it, and let’s say you’ve got all your resources and a bankable feasibility study, it’s probably two to four years to construct it. Your construction costs can range from a couple hundred million dollars for the small mines up to several billion dollars for the large scale. A large-scale copper mine today will cost $2 billion to $3 billion, maybe even more. We’ve been working on a mine in Idaho since 2004. We still have about two years to go on the economic analysis part and then it will be three or four years to build it. The cost to build it is anywhere from $1 billion to $3 billion.

To read the rest of this article, which appeared in the June 2022 issue of SMT007 Magazine, click here.


Suggested Items

SMT Tooling, PSA: 'Perfect Marriage of Innovation and Product'

10/26/2022 | Nolan Johnson, I-Connect007
Jeffrey Pulaski describes the recent partnership between SMT Tooling and PSA, which brings SMT Tooling’s innovation and PSA’s manufacturing capabilities together. Pulaski also shares news on product development, and what visitors to SMTA International can expect to see in SMT Tooling’s floor presence.

KYZEN Comes Clean For SMTAI

10/19/2022 | Andy Shaughnessy, I-Connect007
In this interview, KYZEN Executive Vice President Tom Forsythe explains his company’s plans for the upcoming SMTA International show in Minneapolis, Minnesota, Oct. 31-Nov. 3. He discusses KYZEN’s latest aqueous cleaning chemistries and the company’s focus on providing reliable cleaning equipment and accurate data for customers. "This is the latest in that expanded envelope, with better economics, and better environmental health and safety," he says. "It's all part of this trend of always trying to be a better product and deliver better value.

SMTA International Technical Conference: Trending on Topic

10/19/2022 | SMTA
One of the highlights of SMTA International is the Technical Conference, where more than 100 papers will be presented across at least 30 sessions. “Work that was delayed due to the effects of COVID has been completed and the amount of material coming from the industry is impressive,” says Julie Silk, VP of technical programs. “We have a packed conference this year in Minneapolis.”

Copyright © 2022 I-Connect007 | IPC Publishing Group Inc. All rights reserved.