Pad Cratering Susceptibility Testing with Acoustic Emission

Reading time ( words)

Table 1: Parameters of four-point bend test.



Figure 2: Four-point bend setup.

Figure 3 shows a test board in the fixture. Four AE sensors are under the clamp shown in Figure 3. To setup the 4-point bend testing, a bare board was tested to failure, plus a sample of each laminate was tested to electrical failure and AE failure respectively. With enough load, it can be expected that laminate boards will emit away from any stress rising due to solder balls. The first AE on boards without components was found to be at a deflection of 11mm. This load level is well above the load levels under test of the populated boards. Testing bare boards before the populated boards is necessary for any new board laminate/layup or the substitution of lower frequency sensors.


Figure 3: Test board in fixture and location of AE sensors.

All AE equipment used in this study is off-the shelf commercial offerings. A high end AE measurement system was used with pre-amplifiers which provided enough versatility for multichannel low noise captures, 100-nanosecond global clock resolution of arrival times.

AE sensors with resonant frequency of 650kHz and

Event criteria and location analysis

The three primary settings for AE detection in this type of AE system are threshold, rearm and duration discrimination testing. The former setting is to distinguish the beginning of the event, the latter two the end of the event. The transient capture allows a known beginning and end to an event, and detection threshold plays a role in both. Typical concerns of the settings are sufficient sensitivity, noise rejection of low level noise, managing the trade-off between distinguishing events and allowing overlap from reflected events and getting as accurate an arrival time as possible. Fortunately, most of these are not issues in this board, sensor and strain rate combination. Thresholds between 30-40 dB AE are all viable with little noticeable difference. Lower levels may detect more background noise and more care is required at 30 dB to keep out external vibrational noise. As the threshold for detection is increased, the beginning of the wave is not captured as well, causing a small amount of error in location. A good starting point is a 40 dB threshold until there is more familiarity with the AE measurements. The end of the signal is also affected by threshold level. With this test, the strain rate is very high and the potential for event overlap will occur more readily at lower thresholds. Rearm times in the ballpark of 1 millisecond can be used without compromising distinct AE hit determination. If a 300 kHz sensor was substituted, the lower range of thresholds would be less of an option due to susceptibility to low frequency noise and overlapping signals. With this test, unlike other AE applications, these parameters are non-critical, at least with the 650 kHz sensor.

The largest experimental factors affecting the location results are choice of sensor array. Figure 3 shows the placement of the sensor array. It is desirable for all damage locations to be within the array as location errors increase significantly outside the sensor array. It is also important to have redundancy in the measurements. It takes 3 sensors to locate in a plane, 4 sensors give a redundancy factor that can help mitigate errant sensor results. More sensors would improve on this further, but at the cost of slowing testing. For positions, the sensors were placed just inside the 4 point bend far enough so that at peak deflection the sensors do not contact the 4 point bend fixtures and generate noise. Two of the most likely weak points on the board itself, the corners of the J4 package, sit close to the edge of the four point span and even closer to, if not outside the sensor array, make the coordinate location in this region much more error prone than other parts of the board.

The velocity for the laminates was determined in pretest for both orthogonal directions. Event builder timeouts were several times the expected time delay across the sensor array. A representative velocity is used for x and y coordinate determination with the understanding that it is a compromise velocity with regard to the asymmetric nature of composites. Simulated AE (Pencil Lead Breaks or PLB’s) was performed in a test pattern, specifically the corners of all 3 chips (12 total positions), and showed consistent location within 1-3 mm of each corner. This was performed on all boards prior to testing. It is expected that simulated AE will locate better than real, damage based AE, although the converse can also be stated; that the real damage can almost always be expected to locate less well than the PLB. Figure 4 shows an example of the output of the AE test, with mapped location of AE events and signal amplitude vs time chart.


Figure 4: An example of AE events.


Suggested Items

Passing the Test With SMTA’s Rob Boguski

09/14/2022 | Andy Shaughnessy, I-Connect007
I recently spoke with Rob Boguski, president of Fremont, California-based Datest and an SMTA vice president and board member. Rob explained why today’s test customers are asking for more information than the traditional pass/fail, offers a preview of SMTA International, and gives an update on SMTA’s planning strategy for the next five years.

Four Silver Linings in the Stormy Clouds of Pandemic, Supply Chain, and Inflation

09/14/2022 | Dr. Ronald C. Lasky, Indium Corp.
It may be difficult to see any bright spots in the current and recent economic situation. We have all experienced the devastation of the pandemic, supply chain issues, and most recently, inflation. However, as a senior technologist for an international materials supplier (Indium Corporation) and a professor of engineering at an Ivy League research university (Dartmouth College), I offer these four silver linings for those of us in the electronics industry.

Solder Paste Printing and Optimizations for Interconnecting Back Contact Cells

07/26/2022 | Narahari S Pujari and Krithika PM, MacDermid Alpha Electronics Solutions
The interdigitated back contact (IBC) is one of the methods to achieve rear contact solar cell interconnection. The contact and interconnection via rear side theoretically achieve higher efficiency by moving all the front contact grids to the rear side of the device. This results in all interconnection structures being located behind the cells, which brings two main advantages. First, there is no frontside shading of the cell by the interconnection ribbons, thus eliminating the need for trading off series resistance, losses for shading losses when using larger interconnection ribbons. Second, a more homogeneous looking frontside of the solar module enhances the aesthetics.

Copyright © 2022 I-Connect007. All rights reserved.