Acceptance Testing Of Low-Ag Reflow Solder Alloys (Part 2)


Reading time ( words)

In Part 2 of this two-part article series, the authors discussed the test results for low-silver alloys using these solder paste alloy assessment protocols for BGAs and leaded components, and the impact of the alloys on printed circuit assembly process windows.

Test Results and Discussion

Manufacturing DoE Results

IMC Thickness

Measured on BGA Manufacturing DoE Test Boards (see Figure 1 in Part 1) that were reflowed 3 times with a peak reflow temperature of 250 °C and 120 seconds TAL.

Two BGA body sizes were evaluated [14 mm and 23 mm]. IMC thicknesses for alloys A and B were normally distributed with no significant difference between the large and small BGA. For alloys C and D, greater variability in the large BGA IMC thickness resulted in values significantly different than smaller BGA (as seen in Figure 1 and Table 1).

HP-13Aug15-Fig1(3).JPG

Figure 1: IMC thickness distribution by Alloy (A-D) and BGA size (large/small)

Table 1: Summary of IMC thicknesses (microns)

HP-13Aug15-Table1(3).JPG

Copper Dissolution

This was measured on the BGA Manufacturing DoE Test Boards (see Figure 1 in Part 1) that were reflowed 3 times with a peak reflow temperature of 250°C and 120 seconds TAL.

Cu thickness measurements were made at each solder joint, in the middle of the joint and underneath the soldermask adjacent to the joint. Cu removed was the difference in copper thickness at these two locations. Cu dissolved was determined by subtracting Epsilon (thickness of Cu removed during soldermask etch in the PCB fab process) from the Cu removed values.

HP-13Aug15-Fig2(4).JPG

Figure 2: Cu dissolution distribution by alloy

Table 2: Summary of Cu dissolved (microns)

HP-13Aug15-Table2(4).JPG

The amount of Cu dissolved after soldering was less for the low silver alloys than that for SAC305. The Cu dissolution results were normally distributed for the evaluated alloys but varied with alloy and BGA size (as seen in Figure 2 and Table 2). The Cu dissolution performance varied by BGA size, though not in a consistent fashion. While alloy B showed comparable Cu dissolved values between the 2 BGA sizes, alloy C and D both had more Cu dissolved for the larger BGA while alloy A had greater Cu dissolution values for the small BGA (this could be attributable to bare board Cu characteristics between the different vendors).

Share




Suggested Items

Passing the Test With SMTA’s Rob Boguski

09/14/2022 | Andy Shaughnessy, I-Connect007
I recently spoke with Rob Boguski, president of Fremont, California-based Datest and an SMTA vice president and board member. Rob explained why today’s test customers are asking for more information than the traditional pass/fail, offers a preview of SMTA International, and gives an update on SMTA’s planning strategy for the next five years.

Four Silver Linings in the Stormy Clouds of Pandemic, Supply Chain, and Inflation

09/14/2022 | Dr. Ronald C. Lasky, Indium Corp.
It may be difficult to see any bright spots in the current and recent economic situation. We have all experienced the devastation of the pandemic, supply chain issues, and most recently, inflation. However, as a senior technologist for an international materials supplier (Indium Corporation) and a professor of engineering at an Ivy League research university (Dartmouth College), I offer these four silver linings for those of us in the electronics industry.

Solder Paste Printing and Optimizations for Interconnecting Back Contact Cells

07/26/2022 | Narahari S Pujari and Krithika PM, MacDermid Alpha Electronics Solutions
The interdigitated back contact (IBC) is one of the methods to achieve rear contact solar cell interconnection. The contact and interconnection via rear side theoretically achieve higher efficiency by moving all the front contact grids to the rear side of the device. This results in all interconnection structures being located behind the cells, which brings two main advantages. First, there is no frontside shading of the cell by the interconnection ribbons, thus eliminating the need for trading off series resistance, losses for shading losses when using larger interconnection ribbons. Second, a more homogeneous looking frontside of the solar module enhances the aesthetics.



Copyright © 2022 I-Connect007. All rights reserved.