If It's My Data, I Can Do What I Want, Right?

The trend today for consumers is clearly moving away from mass produced goods to personalized goods made in a mass-produced way. The sheer number of variants and options in current products is testament to the expectations that modern consumers have. This applies to software as well as hardware, as “users” expect many options to tweak how applications look and operate. Often however, the available options or configuration doesn’t go far enough. Opening systems up for direct data access risks reliability and security as customers of sophisticated manufacturing systems want to integrate and customize their solutions by going directly to system databases. Hearing from suppliers that the certain data is not available for external use is not well received. The risk versus flexibility argument needs to be resolved, with a fresh approach.

A couple of years ago, I spec'd a new car, something reliable to get me to the airport on time, every time, and something that I could enjoy. Having chosen the model, there were the optional extras to choose from, which together created literally millions of different specification combinations. Being from a tech background, I was tempted by a few of the cleverer yet reasonably priced features on offer. Here is where I then learned that even the best-in-class automotive manufacturers in Europe don’t have a truly Lean business. It took many weeks for my car to be scheduled into production, and a few more after that to be delivered. Sure, the final assembly line itself is Lean; we know the suppliers of the electronic sub-assemblies are Leaner than ever before, but the customer ordering process is anything but Lean. Here is where the waste is cleverly hidden, having customers on the hook for payment, paying for the impression of Lean. How many people choose instead to go for an alternative simpler and quicker process? Many, I suspect.

A few weeks of life with my new car, with no major disappointments, though one thing did start to get annoying. Equipped with the latest LED technology headlights, brake-lights, and turn-signals, most other lights in the car utilized the old technology, heating up a thin brittle piece of wire until it is white hot within a vacuum inside a glass bubble. Fire and gasoline: a great combination. The waste of energy, the massive localized heat produced all around the car, just did not appeal to the engineer in me. A quick look on some Chinese websites revealed some amazing new LED technology to replace pretty much every old-school bulb in the car, without a significant cost. Now, with my car more fresh-looking and energy efficient, I wonder why car makers choose to save a few cents, if anything, to make my car look as though it was lit with feeble little wicks from lanterns dating back to the early part of the last century rather than going for a modern look. I was tinkering with options that were not a part of the car makers’ option list.

Replacing some internal bulbs in a car is one thing. I also read in forums that some owners of cars similar to mine were also changing the vehicle operating software. While some of these changes seem minor, such as to make the car default, to not cutting the engine when waiting at traffic signals, which seems (in my mind) to save a tiny amount of fuel compared to the wear and potential damage to the engine and related equipment. It opens up a couple of tricky issues. First of all, how do we know that the modified software is legitimate, that it is based on the latest official version from the car maker, and that it will work perfectly, given the plethora of connected software-driven devices in the car? What is the motivation of the person providing this "fix"? Have they introduced a "back-door" into the software with some ulterior and potentially deadly motive? The car manufacturer will surely cancel any warranty on finding out that such changes have been made, as the car maker can no longer be responsible for the behavior of the vehicle. Servicing and support costs, the fixing issues within the warranty period of cars could get prohibitively expensive very quickly, plus of course, the potential liability in the case of a serious accident. Then there is the insurance company, who most likely will feel the same way as the manufacturer, especially where cars today provide more and more aids through hardware / software technology. And that people are very likely to take for granted, after a very short time, their ability to decouple their thoughts from the actual driving. This whole area is an absolute minefield.

The risks associated with changing the software of a car are not too dissimilar to changing or "hacking" software on the shop-floor. Looking around a system database, there are many files, often with what may seem like meaningful file names, some which are human readable, such as in XML format. It can even be seen when these files are updated. This apparent simplicity however is just the "tip of the iceberg" of the layers of data storage and management within a manufacturing system. Most files within the system structure contain more data than is immediately obvious, with data fields that have inter-dependencies with other files. An XML file may sound quite standard these days, but the content itself is not standardized in any way. Take for example the import of design data. There may be a file created that appears to contain a list of reference designators, including such things as XY position etc. The file is likely to contain additional data, such as fiducial information, and also links to dependent information such as internal part numbers; material shape codes; vendor profiles; approved vendor lists; MSD profiles; etc., and in fact, potentially any information that could be needed to generate optimized machine programs. The file may appear to be the converted contents from design, but may in fact be a critical intermediate file in the engineering process of the information. Reading the data is not so simple, as not all records may be equally valid, with logical deletion being a common part of such formats. Changing, adding, or deleting records within the file is extremely likely to create corruption in the system as dependent links are not established correctly, or are broken.

In the early days of manufacturing and engineering systems in general, certain files, whether from solution providers or machine vendors, were shared with customers based on their demand. While this did make systems more flexible for the customer resolving immediate issues, it brought the risk that the operation could become unstable, as customers occasionally made mistakes with the reading, creation, or update of the files, causing data integrity issues, which lead to many bizarre and often urgent support issues, for which the system supplier faced additional support costs. This is one of the prime reasons that machine vendors and software providers usually charge for official supported interfaces, which have defined scopes and limitations. This is a technology issue, and also a business issue. No software supplier can accept changes introduced that may break the system which are not under their control.

In the light of the new IoT philosophies that are rapidly becoming the expectation, this problem of flexibility versus risk is resolved on the lower level, as IoT establishes the transfer and availability of data everywhere without the need for "hacking" into internal system database structures. This is a very good thing, as systems themselves can become more managed and secure. On higher levels however, risk can be expanded by at least an order of magnitude. The introduction of IoT technology is regarded by most already as a given, the only questions are how and when. Expected issues therefore need to be dealt with, two of which are:

1. Extent of IoT data exchange: If we pursue the course of the past in terms of data sharing, IoT data would be made up from simple messages, mainly as outputs, that would replace the vast array of made-to-order customer interfaces of all kinds that currently exist. Hardly a technical issue and it makes business sense, as long as a reasonable data standard definition, such as OML (Open Manufacturing Language) is used. The lesson learned, however from the past, is that information requirements from different customers in different situations varies considerably, and, it evolves. Looking at just one set of requirements, even for a major connected application, is not likely to reflect even a significant portion of the ultimate IoT data needs. Even with the ability of the IoT data exchange language such as OML being able to support the vast majority of requirements, each machine vendor, system provider, or local developer has to decide what data they want to share, and to what extent their solutions should interact on the IoT level. Whatever the data transport mechanism chosen, failure to disclose the extent of the IoT support to customers will result in disappointment where key expectations are not met, leading back to the situation where customized solutions are needed. Data output is just the start of the problem. When considering the data input aspect of IoT, that is the collection of data from other processes and/or site solutions, this becomes a far more complex issue as system or process operation may be asked to change, depending on the input data. This should be managed in a safe, efficient, and secure way an area, which is quite new for most machines and most software solutions such as ERP, traditional MES, etc. In this respect, apart from the output of a standard set of legacy data, we are at the start of understanding how IoT can and will impact our machine and system operations.

2. Security of IoT data: While data integrity within a stand-alone system can be managed and confirmed, once the data is sent outside, there will be additional security issues to manage. Of course, the IoT data transfer itself can easily be secured in a variety of different ways, many of which are available as part of the data exchange technology, and are proven. The more important factor in a controlled environment such as the factory, however, is what happens to the data once it is received by the intended party and is once more “open.” Few individual IoT messages in themselves will carry much importance. Together however, a great deal of information about the operation and products that are made can be gained. Information about performance of competitor systems may also now become freely available. Restrictions such as ITAR also still apply, so routing and utilization of information needs to be carefully managed, especially where data is stored in a cloud, which may physically reside across many different systems, and across continents. Though potentially more widespread with IoT, these issues are still similar to legacy issues of today. Once again, the real threat comes when we start to think about the true nature of IoT, where commands or requests may come in to processes and systems from outside, albeit over a secure interface, intended to control and manage the operation in a better way, which could also have been created by systems or flows that have been compromised.

It is like the "back-door" that may have been introduced into your car’s software through an innocent looking update. We hear already about cases where hackers have managed to get live access to a car as it is driving; to open windows, turn on lights, activate emergency braking, etc. The risk in this case is easy to understand. The same risks however, are there in manufacturing with IoT in the future. With machines, processes and systems now becoming dynamic, receiving live external communication that modifies their behaviour from outside, we face the same kinds of security concerns, except that with billions of IoT transactions potentially per day in a factory, it is going to be hard to track. The continued and professional management of IoT standards, as well as systems that adopt them, and environments that facilitate them, is critical. The IoT-based application layer is now more exposed and available to a wider range of solution providers as well as machine vendors, and so is the layer in which most risk will be faced. Many of these applications will be made by customer IT teams, bringing us back full circle to our original problem of data and system integrity issues where customers need to gain additional connectivity, flexibility, and control. The knowledge and understanding of IoT-related IT skills should grow alongside the technology, or all IoT solutions must be provided by trusted suppliers. Nothing in this regard has really changed, but the stakes are now far higher. It is time to take this seriously.

Back

2017

If It's My Data, I Can Do What I Want, Right?

05-04-2017

In the light of the new IoT philosophies that are rapidly becoming the expectation, the problem of flexibility versus risk is resolved on the lower level, as IoT establishes the transfer and availability of data everywhere without the need for "hacking" into internal system database structures.

View Story

The Essential Pioneer's Survival Guide: One Size Fits All?

03-24-2017

In the same way that we are not all driving the same car, have the same phones, or use the same SMT equipment in our factories, we are unlikely to all end up using a single smart solution or IoT technology. Decisions on automation, IoT technologies, and software computerizations need to be based on merit because the choices vary considerably.

View Story

Smart for Smart’s Sake, Part 3: Unification & Traceability

01-06-2017

In the continuation of his "Smart for Smart's Sake" series, Michael Ford writes about another opportunity offered by the move toward digital manufacturing—the complete traceability of the operation. Now, traceability for electronics is defined by a dedicated standard in IPC-1782, which is designed to bring the appropriate levels of traceability without any net cost to the operation, in a smart way.

View Story
Back

2016

Smart for Smart's Sake, Part 2: Material Management

11-25-2016

Data collection in the factory is not just about machine interfaces and gathering data from related assembly processes, it is also about transactional events that directly affect the production operation. In the second part of this series, Michael Ford looks at how Lean supply-chain logistics are an essential component of a "smart factory".

View Story
Back

2015

The 'New Face' of Automotive Traceability

09-04-2015

A quiet revolution is taking place within the automotive electronics industry, driven by a collection of technology advances, the need for further energy efficiency, and ever enhanced safety.

View Story

Industry 4.0: Who Benefits?

07-13-2015

After many cycles of ROI justification have occurred already in most PCB assembly manufacturing companies, people are realizing that innovation and investment in new systems may affect them in ways that are less than optimum, resulting in certain groups within the organization resisting pretty much every major innovation. Along comes Industry 4.0, which, whether fully and properly understood or not, will certainly trigger a significant amount of “automated” objection from the shop floor.

View Story

To Be Lean is to Be Human

05-20-2015

The concepts related to Lean thinking continue to be interpreted in different ways by different people. Relating what happens in real life with principles of Lean as applied to manufacturing can serve to demystify the subject, opening up appreciation and acceptance for the adoption of new Lean ideas in a way that is simple and non-threatening.

View Story

Stop the SMT Conspiracy, Part 2: Abduction

03-25-2015

Tours of SMT factories sometimes make Michael Ford feel like he is in an episode of The XFiles. In Part 1, he focused on information about processes that were often out of this world. In this article, he focuses on a case of abduction.

View Story
Back

2014

The Future of SMT: Welcome to the 4th Dimension

12-24-2014

A revolution in PCB-based electronics manufacturing is about to happen, driven by the same underlying principles behind the more general Industry 4.0 innovation currently discussed in Germany. This will act not only to drive a new wave of manufacturing competitiveness in the market, but will also bring home production traditionally regarded as being more cost-effective from countries with lower labor costs. The catalyst for these changes lies in the 4th dimension.

View Story

Stop the SMT Conspiracy, Pt. I

10-30-2014

Pointing out a line of machines, we are told that these are the very latest technology, the fastest, most accurate, and reliable models available, a significant investment intended to enable the company to satisfy the most demanding of customer needs.

View Story

Stop the SMT Conspiracy, Part I

10-29-2014

Michael Ford writes, "When I take a tour of an SMT factory it feels like being in an episode of "The X-Files." I'm not talking horror stories about glowing green men, nor am I referring to slimy silver life forms that lurk at the bottom of wave solder machines. I would not even dream of mentioning deviant behavior such as the use of AOI machines as photocopiers, production documentation systems to make wedding invitations, or even those people who use ICT fixtures as a strange form of acupuncture."

View Story

The Essential Pioneer's Survival Guide: Stop the SMT Conspiracy, Part I

10-29-2014

Ford writes, "When I take a tour of an SMT factory it feels like an episode of 'The X-Files.' I'm not referring to slimy silver life forms that lurk at the bottom of wave solder machines. I would not even dream of mentioning deviant behavior such as the use of AOI machines as photocopiers, production documentation systems to make wedding invitations, or even those people who use ICT fixtures as a strange form of acupuncture."

View Story

Reshoring Made Simple

09-10-2014

Companies are realizing the pros of offshoring are no longer what once they were and that the cons are becoming more significant. Is reshoring really commercially viable? This reshoring opportunity, coordinated with the seemingly unstoppable current market trends, can either be taken advantage of now, or if delayed, could represent the final loss of onshore manufacturing opportunity.

View Story

Is It OK To Be Human?

07-02-2014

After being stagnant for many years and adopting production principles based on process qualification and repeatability, can automotive find a new way forward, with quality assurance and cost competitiveness, but also with flexibility? Is it the risk of human error that has prevented the industry from moving forward toward highly reactive processes, such as those mandated by Industry 4.0?

View Story

The Essential Pioneer's Survival Guide: Is It OK To Be Human?

07-02-2014

After being stagnant for many years and adopting production principles based on process qualification and repeatability, can automotive find a new way forward, with quality assurance and cost competitiveness, but also with flexibility? Is it the risk of human error that has prevented the industry from moving forward toward highly reactive processes, such as those mandated by Industry 4.0?

View Story

Expanding Your Comfort Zone

04-30-2014

In the engineering world, there is increasing pressure to be a specialist, especially in technical roles. Does this intense focus on specialisation work against us, however, when we consider the wider requirements of the business? How can we bring added value to specialist roles without getting distracted from specific objectives?

View Story

The Essential Pioneer's Survival Guide: Expanding Your Comfort Zone

04-30-2014

In the engineering world, there is increasing pressure to be a specialist, especially in technical roles. Does this intense focus on specialisation work against us, however, when we consider the wider requirements of the business? How can we bring added value to specialist roles without getting distracted from specific objectives?

View Story

Why Are ERP and MES So Limited in Electronics?

03-05-2014

Although the price for enterprise resource planning (ERP) and manufacturing execution systems (MES) tools can cause sticker shock, especially considering the IT muscle needed for their continuous operation, the critical measure of return on investment is compelling--except in the case of electronics manufacturing.

View Story
Back

2013

Production Automation Revolution: Are We Nearly There Yet?

11-13-2013

How great would it be to take a product blueprint and simply command the production facility to "make it for me now!" Will we ever get to the stage where the production operation has the ability to reply and say, "Sure, I'll figure out how to do that and have it to you within the hour?" We may be closer than we think.

View Story

The Essential Pioneer's Survival Guide: Dropping the BOM

09-18-2013

What ends up executing as a bill of materials on the shop floor is the result of several complex and often manual processes, some of which will corrupt the BOM's data integrity. Who takes responsibility for what is actually produced as compared to what the design intended?

View Story

The Essential Pioneer's Survival Guide: Manufacturing Software: Make or Buy?

07-10-2013

From a business perspective, a significant software purchase for the production area can be a difficult decision. Top-heavy systems such suffer from the perception that only a fraction of the functionality will ever be used, so why pay for all of it? Attempts by some lower level solution providers within SMT production have been less than successful, leaving a bitter taste for some.

View Story
Copyright © 2017 I-Connect007. All rights reserved.