Happy’s Tech Talk #19: Next-generation Electroplating Systems

Electroplating has always been at the core of printed circuit fabrication. It was the first process I was assigned to as a young engineer at Hewlett-Packard in 1970. Of course, the copper-plating process was copper pyrophosphate, an alkaline—a very temperamental bath from MT Chemicals Inc. Soon after I mastered the chemistry and control of this plating solution, I had the opportunity to test and introduce PC-GLEEM from LeaRonal, Inc., a new sulfuric acid-based copper sulfate copper-plating chemistry. We never switched back.

The technical editor at CircuiTree was Karl Dietz, who wrote many Tech Talks about acid copper plating. At that time, electroplating systems were primitive and simple. I will focus on the equipment changes, because Karl covered most of the plating chemical changes in his columns.

The plating cell itself has gone through multiple upgrades to accommodate different chemistries and via constructions. The first innovation I ever saw was in 1971, when Nathan Pritikin (of the Pritikin diet) introduced me to a box plater at his PCB shop in Galena, California, and Peter Pellegrino demonstrated his flo-motion plating manifold—a fluid manifold with numerous outlets to distribute the plating electrolyte at such a velocity and volume that it allowed a much higher current density and ion distribution even down into the plated through holes—that could plate one-mil of copper (in the hole) in 15 minutes. Since then, most of the innovations have come from plating equipment vendors and the rapid growth of multilayer and high-density interconnect PCB. Some areas of focus are discussed here.


Plating Cell Construction
The basics have not changed much, but several innovations have been added. These include:

Anodes and Cathodes

One of the biggest innovations is the insoluble anode, constructed out of titanium or iridium oxide-coated titanium electrode and the anode membrane (Figure 1). Soluble, phosphatized copper anodes can introduce particulates and limit the ability to control plating distribution. Insoluble anodes are known to eliminate the particulates, provide considerable anode area, and the anode can be shaped to match the plated part. When matched with solution inductors and anode membranes, they limit additive breakdown and consumption normally seen with the soluble anode surface.

Segmented Anodes

Another innovation is the segmented anode (Figure 2). It showed much better control of current distribution, especially when the cathodes (boards) are moving on a vertical or horizontal conveyor.


Solution and Work Agitation

Eductors for high-solution agitation began with flo-motion manifolds in the mid-1970s. The performance progress has been increasing ever since, particularly with new fluid nozzles providing better solution distribution without the introduction of air. Higher laminar flow equates to higher solution exchange and fluid dynamics, especially in confined spaces or blind vias. Work agitation has improved with the Z-axis added for better fluid distribution and reduction of entrapped micro-bubbles. Fluid dynamics is controlled by improved pumps, filters, and integrated support equipment (Figure 3).


Transport Systems: Vertical Conveyors and Hoists
Laser distance units were first employed by Hewlett-Packard’s PCB facility in Loveland, Colorado, in 1975. By driving the hoists with variable-speed motors and using the HP laser surveying system to measure the precise location of their various hoists, they could accelerate and decelerate to the exact center of process tanks. This saved precious minutes in hoist travel times and ensured that none of the hoists collided.

Automated Racking
Robotic and articulating plating flight bars are now employed to rack PCBs into the plating carriers and ensure that a good electrical contact is made. Figure 4 shows some of the many simple robotic arms used to rack PCB panels. The articulated flight bars allow hoists to carry two sets of cathodes but move them closer in non-plating cells to save space.

Control Systems, Sensors, and Chemical Dosing
Programmable logic controllers (PLCs), with their associated networking capability and display graphics, have emerged as the most popular control system. With their associated sensors and monitors, they are the workhorses of the control field. As seen in Figure 5, they can control PCB panel movements, as well as power supplies, pumping and filtering, chemical sequencing, temperature and analysis, and displays and warnings.

Modular Power Sources and Rectifiers
Modern current and voltage sources with digital control and modular design are now common. The modular system design can use identical rectifier modules, and the increase in output power through parallel or serial operation of the individual modules provides flexibility for plant expansion, production changeover, and process changeover. Redundancy is also guaranteed in the event of a component failure.

In the course of modularization, multichannel systems are installed, anodes and anode groups are switched on and off, and specific monitoring options for contacting anodes and anode groups are provided. The use of a complex digital control system results in increased control accuracy, lower residual ripple, an extended control range, and higher efficiency. This all operates under the control of PLCs with integrated ProfiNet interface for data exchange with the plant control system for diagnosis and remote maintenance and improved energy efficiency.


Ventilation and Effluents
Modern electroplating systems can reduce exhaust air from the process by up to 80% by having tank covers that are programmed to open when the transport drops a load into it. This leads to fewer emissions released into the environment (Figure 6).

By using heat pumps to warm rinse waters, the evaporation loss is replaced by water recovered from ventilation (Figure 7). This means that the exhaust air is clean and dry, and no additional wastewater is produced. Thermodynamic synergy effects regarding waste, heat, evaporation, and condensation are the result. The necessary exhaust air volumes can be kept small, and thus the necessary purification is kept to a minimum by flow-optimized extraction.



As seen in Figure 7, the heat pumps can be very efficient in cooling the many power supplies and process tanks, and that energy, along with a principle of Raleigh wave ultrasonics3, can be used to dry the PCBs efficiently, including all the vias and cavities.

Electroplating Simulations and Dynamics
Newer understanding of Faraday’s principles and boundary layer dynamics has led to the anode effect model based on number, spacing, and distance to the cathode, as seen in the first equation5. The second equation introduces the diffusion model for electrodeposition4.


Predictive Maintenance
For predictive maintenance, parameters such as voltage, current draw, vibrations, temperature, acoustics, and switching frequency are measured, recorded, and stored. This is in addition to the operating hours of the device. Depending on the device, the data is stored in a database and used to predict maintenance options. For each device, the standard values for the existing measuring channels are stored as set point parameters.

New innovative evaluation modules record and evaluate the target and actual values. This enables the calculation of the statistical probability of failures, depending on the frequency and length of the violations of the standard. This evaluation is self-adaptive and improves with an increasing number of data sets.

Various evaluations can be made available to the user in a device list, whereby the percentage probability of an event (i.e., regular maintenance and preventive inspection) is displayed accordingly.

The sophistication of electrodeposition through both chemistries and equipment and analytical techniques, have improved so much that, today, electrodeposition is employed in semiconductor fabrication for through-silicon vias and IC packaging for through-glass vias in the micron geometries. Each new generation of electronics further erodes the line between wafer and PCB fabrication. The overall requirement for a plated copper deposit is a thinner deposit, but one with consistent higher ductility, improved thickness distribution and throwing power, and the elimination of surface defects.


  1. “The Perfect Copper Surface, IPC APEX EXPO,” by Eric Stafstrom and Garo Chehirian, January 2014, San Diego.
  2. Atotech product brochure.
  3. Ludy product brochure.
  4. “Evolving Technologies for Fine-Line, High-Interconnect Density Manufacturing,” by Dr. Karl Dietz, TPCA-DuPont Seminar, Taoyuan, Taiwan, July 10, 2009.
  5. “The Effect of Discrete Bar Anodes on Electroplating Current Distribution,” by Dr. D.A. Rudy, AES Symposium Proceedings, Fort Worth, Texas, Jan. 21, 1976, pp. 47-52.

Happy Holden has worked in printed circuit technology since 1970 with Hewlett-Packard, NanYa Westwood, Merix, Foxconn, and Gentex. He is currently a contributing technical editor with I-Connect007, and the author of Automation and Advanced Procedures in PCB Fabrication, and 24 Essential Skills for Engineers.

This column originally appeared in the May 2023 issue of PCB007 Magazine.



Happy’s Tech Talk #19: Next-generation Electroplating Systems


Electroplating has always been at the core of printed circuit fabrication. It was the first process I was assigned to as a new young engineer at Hewlett-Packard in 1970. Of course, the copper-plating process was copper pyrophosphate, an alkaline—a very temperamental bath from MT Chemicals Inc. Soon after I mastered the chemistry and control of this plating solution, I had the opportunity to test and introduce PC-GLEEM from LeaRonal, Inc., a new sulfuric acid-based copper sulfate copper-plating chemistry. We never switched back.

View Story

Happy’s Tech Talk #18: Putt’s Law and the Successful Technocrat


I have read very few humorous technical columns in my career, but the one exception is an 11-part series, “The Successful Technocrat” by Archibald Putt, which was featured in Research & Development Journal in 1976 and 1977. The author later published a book, Putt’s Law and the Successful Technocrat2, and years later, I tried to buy it—only to have to wait eight years to get it. In the meantime, I have saved copies of the articles and sent them to friends.

View Story

Happy’s Tech Talk #17: Can You Build EVs Like PCs?


You probably haven’t heard of Foxtron, but if you follow electric vehicles (EVs), you will soon. Foxtron is Foxconn’s EV startup, created in partnership with Yulon Group (YLM), a Taiwanese car manufacturer of NISSAN designs. In 2021, the company introduced three EV models in Taiwan and in 2022, Foxtron introduced a new all-terrain utility pickup Model V and a lower-cost Model B sedan.

View Story

Happy’s Tech Talk #16: Protocols for a Smart Factory Future


Karl Dietz never wrote on automation and the Smart factory, but these topics have been a priority for larger OEMs since the early '80s. I became involved in automation planning after designing and building Hewlett-Packard’s newest printed circuit fabrication facility in Sunnyvale, California. The journey to a Smart factory is evolutionary; it starts with a thorough business plan that charts a roadmap for your enterprise into the future.

View Story

Happy’s Tech Talk #15: Printed Electronics Using Flex


The printed electronics sector is presently an area of great interest to many in the electronics manufacturing industry. Because of their incredible utility, printed electronics are poised to generate tens of billions of dollars in the coming years. According to IDTechEx, the total market for anticipated and potential printed electronics was near $62 billion in 2019 and expected to grow to nearly $81.8 billion within ten years. Earlier projections of a $300 billion market were floated a few years ago, but the $62 billion figure is still considerable and roughly equal to the current value of the global printed circuit market.

View Story


Happy’s Tech Talk #14: Palladium as a Final Finish


Karl Dietz never wrote on the topic of palladium as a final finish, but he did write about gold plating as a final finish and had an excellent discussion on copper plating. But palladium now has a renaissance as a final finish. It was very popular in the 1970s, as the only other final finishes were tin-lead reflow-Ni/Au-OSP or immersion tin. Palladium was very popular with the automotive industry then and a major supplier of boards was Photocircuits of Glenn Cove, New York.

View Story

Happy’s Tech Talk #13: Direct Imaging Revisited


It is hard to believe we have had direct imaging for 40 years, starting with Excellon’s introduction of its DIS-2000 argon laser imager. Since then, companies in 11 countries, ranging from Israel to Norway1, have developed various digital direct imagers. Karl Dietz wrote about this technology several times in his columns2, noting early on the skepticism that laser direct imaging would hit a Golden Age. So, where are we at now?

View Story

Happy’s Tech Talk #12: Nano-Cu Paste for Microvias


Complex build-up HDI technologies continue to expand in applications. Copper electroplating of vias has been perfected but the process is yet another electroplating solution to maintain and can sometimes be a lengthy process. Current conductive paste fills are not as conductive as solid copper but provide reduced cycle time, are still highly conductive and are cost effective.

View Story

Happy's Tech Talk #11: An Update on Inkjet Technologies


Since the first inkjet printer appeared from Hewlett-Packard in 1980, engineers have been trying to use it in printed circuit manufacturing. The first successful application was by HP PCB engineers in 1983 that created an inkjet printer mechanism to serialize each PCB with a unique S/N for traceability. They used one of the UV inks HP developed that worked well on circuit boards but not suited for use on paper.

View Story

Happy’s Tech Talk #10: Optical Alignment/Coupon Welding for Stackups


In this month’s column, I will discuss optical alignment for pinless lamination stackup, a topic that complements the induction lamination in my November 2021 column. Pin tooling plates have been used for lamination since it first started sometime in the 1960s. I first encountered multilayer stackup when I was assigned to increase capacity for our multilayer output in 1972. This was to accommodate the growth of our computer business. Unfortunately, the explosive growth of our calculator orders in 1973 required that we look for numerous vendors to produce the six-layer logic board in the HP-35 calculator.

View Story

Happy’s Tech Talk #9: Radars, Missiles, and the World’s Costliest Computer


Let’s have a little fun and walk back nearly 70 years into the history of electronics and computers. What was the world’s costliest computer and why? The answer is not today’s supercomputers, nor computers built during World War II. Instead, it lies in a real-time air defense radar system built during the height of the Cold War of the 1950s that had left the U.S. extremely vulnerable to a Soviet bomber attack. This was the beginning of a North American strategic defense system, eventually known as the Semi-Automatic Ground Environment System (SAGE).

View Story

Happy's Tech Talk #8: Copper Etchant Regeneration


Copper has become a valuable metal, and with the growth of EV has come higher currents needed in PCB with increasing weight of copper in PCBs. This creates the need for increased copper etching and consumption of copper etchants. Today, in an effort to recoup some of that cost, increasingly more extraction and recovery units are being installed in PCB facilities around the world. Annual profit generation from recovering copper and regenerating PCB etchants has the potential to reach six figures.

View Story

Happy's Tech Talk #7: Next Generation Application Specific Modules


In 1965, Gordon Moore predicted that the number of transistors that could be packaged into a square inch of space would double every year for the near future. Although his projection was later revised to every 18 months, Moore’s Law has withstood the test of time for five decades. Today, we are beginning to see obstacles to this type of exponential growth due to the inherent limits associated with silicon lithography, packaging of the devices, and component placement on PCBs.

View Story

Happy's Tech Talk #6: Looking at the Process of Repanelization


I have spent many years in printed circuit fabrication, including nearly 20% of my career in Asia. One problem that concerns all fabricators is the issue of “How many ‘X-outs’ are allowed per assembly sub-panel array? Here are a couple of solutions I have used and encountered in my travels.

View Story

Happy's Tech Talk #5: Advanced Boards for Heterogeneous Integration


The expansion of IC functionality usually progresses with the shrinking of IC geometries, called “Moore's Law” after Gordon Moore who first coined the phrase. But now that geometries are below 5 nm, the costs and difficulties are creating a barrier to much further advances. So, the solution seems to be to mix IC die on the same substrate as a system-in-package (SiP) that is now called heterogeneous integration (HI).

View Story


Happy's Tech Talk #3: Photonic Soldering


Printed Electronics (PE) continues to be a growing technology. But one of the advantages, as well as a drawback is using low-cost substrates, like paper, that cannot take the temperature of solder paste reflow. Also, the inks need to be cured. One current way to cure the printed inks is with ultraviolet radiation curing, such as used with solder mask or legend inks.

View Story

Happy's Tech Talk #2: Induction Lamination


Multilayers have been around about as long as the printed circuit. The industry has always used heated hydraulic lamination presses to produce these multilayers, with the introduction of vacuum assist in the 1980s. But recently, with the encouragement of GreenSource Fabrication, induction lamination has been perfected by Chemplate Materials of Spain. Chemplate had introduced the use of induction-pinning by optical alignment of innerlayers for multilayer stackup in the early 2000s. This was to go with another innovative way to laminate innerlayers together—the Italian CEDAL resistance-foil vacuum-press, which had some early adopters.

View Story

Happy’s Tech Talk #1: Vertical Conductive Structures (VeCS)


The industry has not had many new structures in the last 60 years. Multilayers have continued to evolve with thinner materials, smaller traces / spaces as well as drilled vias. It’s been nearly 40 years since Hewlett-Packard put their first laser-drilled microvia boards into production for their innovative Finstrate process.

View Story
Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.