Improving Solder Paste Printing


Reading time ( words)

In my recent conversation with process engineers at an EMS company here in the Philippines, they said one of the critical processes that determine yield in their line is the solder paste printing process. According to them, one of the key reasons for this is the incorrect printer set-up, which results in issues such as insufficient solder or solder bridging. Of the three elements involved in the process—stencil, solder paste, and printer—the stencil is considered one of the major factors affecting the transfer efficiency, accuracy, and consistency, of solder pastes into the pads, especially with the continuing trend towards miniaturization.

Indeed, in our latest survey on solder paste printing, a majority of the respondents highlighted stencils as one of their key challenges. They mentioned the quality of the stencils; getting the right stencils—their stencils are done by a third party; aperture design; and stencil wear, among others, as issues around this part of the process. This is made more challenging because of the finer pitch and spacing in PCB designs. Specific problems in this regard include complete filling of apertures, paste release, and the large range of component types and sizes and the solder paste thickness requirement on the same design.

Other main issues include the accuracy and repeatability of the equipment, and the characteristics of the solder pastes being used.

Which brings me to our topic for this month’s issue of SMT Magazine. Many studies over the years have found that up to 70% of PCB assembly defects come from the solder paste printing operation. In this issue, we look at the critical issues in the solder paste printing process, and how assemblers can address these challenges to help improve their yield and quality.

To read the full version of this article, which appeared in the December 2017 issue of SMT Magazine, click here.

Share

Print


Suggested Items

Reducing Flux Splatter in Sensors and Camera Modules

10/30/2020 | Jasbir Bath, Shantanu Joshi, and Noriyoshi Uchida, Koki Solder America And Koki Company Limited
With the increased use of electronics in new technology areas, flux formulations are being developed to address the new and existing requirements. For sensors and camera modules used for Advanced Driver Assistance System (ADAS) and internet of things (IoT) applications, there is a demand for no-clean flux formulations in lead-free solder paste, which can reduce flux splattering during reflow.

IPC Standards Development: Business Challenges and an Inside View

10/28/2020 | Graham Naisbitt, Gen3 Systems
With increasing frequency, standardising the standards, such as ISO 9201, imposes certain rules that must be met to ensure “fair play” amongst the supply chain. There will be those familiar with hearing about “false positives/negatives” and “never trust the salesman,” so mitigating these is no easy task. However, there is the chance for each 5-30 Task Group to review industry requirements and set out the work program for the ensuing period. With that in mind, much of what follows is based on comments we learn about from our industry around the world, many of whom are not yet IPC members. Yes, this is a membership recruitment drive, unashamedly, as well as a search for volunteers willing to help create the standards of tomorrow.

How to Benefit From Robotic Soldering Processes

10/28/2020 | Pete Starkey, I-Connect007
Webinars are in vogue! But in Pete Starkey's experience, the master of the technical webinar with many years’ experience of delivering first-rate events is Bob Willis—electronics assembly specialist, soldering expert, and provider of training and consultancy in electronics manufacture. Here, Pete recaps Bob’s presentation on the upcoming robotic soldering experience.



Copyright © 2020 I-Connect007. All rights reserved.