How CIM and IoT Can Make Your Factory Smart


Reading time ( words)

Abstract

With so many extremely clever scientists and engineers in our industry, the whole complex technology of electronics assembly requires people with specialist skills. When it comes to linking all these processes together, there is more than just a simple data connection to think about. The content of data from the myriad of different processes and technologies firstly needs to be understood and then needs to be transformed into information which is then actionable, not just by a human, but by a computer.

There is no one person who can understand every aspect of every process, and every opportunity for smart factory functionality. Accessibility to new IoT manufacturing data connections is a multi-way technology. As well as higher level systems such as the manufacturing execution system (MES) or enterprise resource planning (ERP) systems making smarter decisions, the same IoT data is also available to every machine vendor, each of whom know their technology down to the finest detail. Here is where we will see the bulk of the smart solutions for assembly manufacturing coming from.

Driving this is the machine vendor agnostic data acquisition and utilization, with complementary functionality through machine, line, factory and enterprise levels. This promotes healthy differentiation between vendors in the same market space, not only in terms of machine performance, but also in terms of the smart solutions that they can provide based on the data collective.

This paper explores the changes in culture between the past, where data was simply sent point to point, and today’s multi-layered IoT technology-based solutions, as well as the effects and opportunities that are here now for the taking.

Introduction

To create smart factories capable of autonomous optimization of interconnected processes, it is necessary to integrate the myriad of disparate computer systems used in electronics manufacturing. Given the complexity and cost associated with this undertaking, the path to a smart factory may seem out of reach to all but the largest manufacturers. To enable the widespread adoption of smart factory functionality, it is therefore necessary to reduce the complexity, effort, and cost by defining a general approach to the smart factory infrastructure.

Industry Challenges

As business needs challenge the electronics assembly industry to support increased flexibility, lower overhead, and stricter quality standards, the industry is rapidly adopting improvements in automation and analytics to meet the challenge. The so-called smart factory and Industry 4.0 initiatives are aimed at further integrating manufacturing processes with business processes to autonomously and continuously optimize operations.

The unique challenge to the electronic assembly industry is the existing level of technical sophistication and automation presently used to manage the complex manufacturing process. Computer integrated manufacturing (CIM) systems are necessary to any electronics manufacturing operation. Many varied computer systems, automated robots, and technical experts work together not only to execute manufacturing but also to design streamlined processes, optimize the supply chain, and manage product quality. To begin linking these existing processes together can be an arduous task requiring a multidisciplinary team of technical process experts, product engineers, operational resources, and business process owners.

Although integration can be a complex and expensive proposition, there are tangible benefits to closely coupling the systems used to manage the equipment, the factory, and the enterprise. The ability to share information and control not only between individual equipment but also between equipment and business systems offers the ability to further automate and optimize sophisticated manufacturing processes.

Immediate Effects on Electronics Manufacturing

Considering the challenges facing the industry, electronic manufacturers will be seeking solutions that represent tangible progress toward the fundamentals of Industry 4.0 and the smart factory, namely autonomous, continuous optimization of operations. SMT equipment vendors have been the first to respond to the needs of the market by expanding the scope of their CIM systems beyond simply controlling the individual machine to managing the entire production line or other ancillary processes such as material management. Through partnerships with complimentary equipment vendors, entire end-to-end solutions can be offered to the market.

Although systems provided by the equipment vendor will be the optimal solution for their equipment platform and will begin to address the need for integrated, autonomous manufacturing, there is still significant complexity in connecting the web of business processes needed for most smart factory functions. Due to a variety of factors, many manufacturers have a mix of equipment vendors.

A given manufacturing site may have multiple SMT platforms and a broad range of third-party equipment platforms to support. To integrate and connect these heterogeneous environments with minimal complexity and cost, it is advantageous to define a generic approach to the smart factory.

Smart Factory Infrastructure

To define a more general infrastructure in which to work, the existing CIM applications can be grouped into the three primary layers that exist functionally: process applications, site applications, and enterprise applications. These groups of applications generally serve the same function in relation to each other, as shown in Figure 1.

Fig1-Mentor-Sep2018.jpg

Figure 1: Smart factory layers.

At the lowest layer are the process applications which control or manage a given manufacturing process. These are the machine vendor applications, programmable logic controllers (PLC), sensors, or custom applications that run equipment, collect data, or guide a person or process. These applications may create event data that is valuable to other processes or to the higher-level infrastructure. To operate, these applications generally require information from the higher-level infrastructure, such as material information, work orders, and flow control.

Sitting above the process-specific applications are the site applications that manage the overall manufacturing flow. The MES infrastructure, process engineering, quality management, material management, and finite production planning applications are typical site-level functions. In many cases, these applications are consuming the event data created by specific processes to actively manage production operation to operation. The site level applications provide the flow control, work order details, and material information required by the process-specific operations.

Share

Print


Suggested Items

Filling the Skills Gap: Strategic Hiring and Succession Planning

04/03/2019 | Nolan Johnson, I-Connect007
While attending the IEEE Rising Stars Conference in Las Vegas, Nevada, I had a long and insightful conversation with veteran technical recruiter Terry McNabb. We covered so much information that the interview has been broken into two sections. This section features our discussion on the shortage of mid-career expertise in the workforce and best practices for hiring experienced technical staff.

Mentor and Seica Partner for Data Prep and Testing Big Boards

01/18/2019 | Pete Starkey, I-Connect007
Mark Laing, business development manager of the Valor division at Mentor, a Siemens company, and Luca Corli, director of sales at Seica, speaks with I-Connect007 Technical Editor Pete Starkey about the partnership between their two companies, which enables efficient data preparation for testing big boards, and accelerates new product introduction (NPI) cycles.

Interview with a High School Robotics Team Mentor

09/14/2018 | Happy Holden, I-Connect007
On the floor of the recent Wisconsin SMTA Annual Tech Forum, I-Connect007 Technical Editor Happy Holden sat down with Aaron Denk, representing the local Cedarburg High School’s robotics team.



Copyright © 2019 I-Connect007. All rights reserved.