A Review of the Opportunities and Processes for Printed Electronics (Part 1)


Reading time ( words)

Printed electronics (PE), also called "plastic electronics," is a new and developing field of interconnect applications that is "related to PCB flexible circuit production." As microsystems continue to move towards higher speed and microminiaturization, the demands for interconnection are opening up new opportunities for "innovative" interconnects.

This article will introduce some of the technology development opportunities for PE for energy, displays, lighting, medical, sensors, information and toys. Printed electronics is focused on innovative applications at the low-end, but the needs of this market, the products already existing and the challenges of "bridging" PCBs to PE is the merging of the "printing world" and the "electronic circuits world." Solution- or liquid-based printing techniques have been utilized in the graphic arts printing industry for more than 500 years to replicate information (with pigment-based inks) on paper in high volumes and at very low costs. The application of these techniques to electronics is leading to a major paradigm shift. This has come about through the development of functional electronic materials (conductors, insulators, and semiconductors).

PE electronics are based on semiconducting, metallic conductive, nanoparticle, nanotubes and conductive organic (i.e., carbon-based) polymeric materials, usually in a solution-based format, which make it possible to deposit materials onto a surface using additive or printing techniques. Organic electronics are not about to replace the silicon in conventional chips, but there are many applications for which they have the potential offer a competitive or superior mix of novel performance and manufacturing economics.

Introduction

Printed electronics is presently an area of great interest to many in the electronics manufacturing industry. In many pieces written about printed electronics, there are projections for a myriad of potential uses for the technology and the tens of billions of dollars that are going to be made in the coming years. To those who have not been deeply involved in the electronics manufacturing industry for a long time, the term printed electronics would seem to have only entered into the industry’s lexicon since the turn of the current century, making it appear to be a new technology.

Interpreting the words printed and electronics in conjunction with one another, as a single term, one could logically assume that it means electronic circuits comprised of conductors and various active and passive components (i.e., transistors, resistors, capacitors) printed directly onto a substrate of some type. Printed electronics, according to this definition, is clearly a significant departure from traditional approaches to electronics manufacturing. However, there are a host of manufacturing solutions that marketers are trying to position under the umbrella of the new term to take advantage of the growing buzz surrounding the technology, which makes for some confusion.

According to IDTechEx, the total market for anticipated and potential printed electronics was near $2 billion in 2009 and expected to grow to nearly $60 billion within ten years. Earlier projections of a $300 billion market were floated a few years ago, but the $60 billion figure is still considerable and roughly equal to the current value of the global printed circuit market.

There is presently a market for printed electronics, but the growth rate predicted by exuberant market forecasters has not yet been seen. Barriers to exponential growth seem to be related in part to the current inability of suppliers to reduce costs to enable large scale manufacturing of printed electronics. So far, printed electronics has replaced a few existing applications, but has made little progress creating new applications outside of radio-frequency identification (RFID) and organic light-emitting diode (OLED). The latter is a true printed electronics solution that has succeeded in making a solid market presence. Other than that, no real killer app or paradigm shift technology has emerged from the current fray. The simple reality is that it is especially challenging to displace incumbent products when entirely new design solutions must be developed, understood and implemented.

Printing circuits on flexible base materials

The main attraction of printing technology for the fabrication of electronics is the possibility of preparing stacks of microstructured layers, and thereby thin-film devices, in a more simple and cost-effective way compared to conventional electronics. The possibility of implementing new or improved functionalities (e.g., mechanical flexibility) also plays a role. The selection of printing method to use is determined by requirements concerning printed layers and properties of printed materials, as well as economic and technical considerations for printed products.

Presently, printing technologies divide between sheet-based and roll-to-roll-based approaches. Sheet-based techniques, such as inkjet and screen printing, are best for low-volume, high-precision work. Gravure, offset and flexographic printing are more common for high-volume production, such as solar cells, reaching 10,000 square meters per hour (m²/h). While offset and flexographic printing are mainly used for inorganic and organic conductors (the latter also for dielectrics), gravure printing is especially suitable for quality-sensitive layers like organic semiconductors and semiconductor/dielectric-interfaces in transistors, due to high layer image registration quality. Gravure printing is also suitable for inorganic and organic conductors in terms of high resolution. Organic field-effect transistors and integrated circuits can be prepared completely using mass-printing methods.

Screen printing is appropriate for fabricating electrics and electronics on an industrial scale due to its ability to produce thick layers from paste-like materials. This method can produce conducting lines from inorganic materials (e.g., for circuit boards and antennas) and insulating and passivating layers where layer thickness is more important than high resolution. Screen printing’s 50 m²/h throughput and 100μm resolution are similar to inkjet printing. This versatile and comparatively simple method is used mainly for conductive and dielectric layers, but can also be used for organic semiconductors (e.g., for organic photovoltaic cells [OPVC], and even complete organic field-effect transistors [OFET]).

Share




Suggested Items

Training for New Hires

05/31/2023 | I-Connect007 Editorial Team
Since training is such a key component in converting an inexperienced new hire into a valued contributor on the manufacturing floor, we asked Brenda Clunie, vice president of sales and operations at EPTAC, exactly how their certification programs deliver on this promise for new hires.

Akrometrix: Masters of Metrology

05/24/2023 | Andy Shaughnessy, Design007 Magazine
At the Atlanta SMTA Expo and Tech Forum, I met Neil Hubble, president of the metrology systems provider Akrometrix. If you’re not sure exactly what metrology entails, you’re in luck. In this interview, Neil explains why metrology is becoming a critical part of PCB manufacturing. We also discuss the company’s capital equipment, testing services, and why Akrometrix counts many of the top PCB and semiconductor manufacturing companies in the world as their customers.

Shopping for a Soldering Robot

05/24/2023 | Ed Zamborsky, Thermaltronics
During factory visits, I've witnessed what’s happened to our workforce after the pandemic. Sometimes it looks like operator separation for social distancing, working extra shifts to cover for lost or missing employees due to illness, workers who now work from home, or they have simply found working no longer suits them. One possible solution when you can’t hire skilled technicians is to look at automation, particularly automation for soldering. For many it was a “feature piece” for the obligatory factory tour just to demonstrate to potential customers they are forward thinking. Now it’s a reality to solve a true workforce shortage issue. But why use a robotic soldering system?



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.