Cortus Launches Low-Power Floating Point Processor for Intelligent Connected Devices


Reading time ( words)

Cortus, a technology leader in low power, silicon efficient, 32-bit processor IP, announced the release of the FPS26 single precision floating point IP core today, the third in a family of products based on the Cortus v2 instruction set. The core is aimed at embedded systems requiring good floating point computational performance while also delivering small silicon area and low power dissipation.

Cortus licenses a range of low power 32-bit processor cores for intelligent connected devices. With growing numbers of controllers in solar energy and industrial control requiring floating point algorithms, many applications require floating point operations executed in hardware to achieve their performance goals. Complex matrix inversion is a challenging computation in MIMO (multiple-input and multiple-output) wireless systems due to challenges around precision, quantisation and scaling which can be mitigated by using floating point.

“For companies developing intelligent ‘things’ requiring floating point algorithms, our FPS26 core offers outstanding computational performance while efficiently using silicon area”, says Michael Chapman President & CEO of Cortus. “It is an excellent fit with the industrial internet of things and with power control applications”.

Although historically embedded software has been dominated by fixed-point operations, there are cases where values may have large dynamic ranges and floating point computation is required or advantageous. Examples include matrix inversion in MIMO baseband processing, matrix multiplication and fast Fourier transforms (FFTs).

The FPS26 has a Harvard architecture, sixteen 32-bit registers and a 5-stage pipeline. It offers an IEEE 754 single precision hardware floating point unit, a pipelined parallel multiplier and a hardware divider. It supports the AXI4-Lite™ bus as well as Cortus APS peripherals. The small size of FPS26 makes it highly suitable for cost sensitive applications. The CPU starts at around 0.192 mm2 using a 90 nm technology. Using the Linpack benchmark FPS26 delivers 9.7 times better floating point performance than the APS25 integer core.

Share

Print


Suggested Items

Solder Mask Evolves into a Truly Additive Process

09/09/2019 | John Fix, Taiyo America Inc.
The 5G era is creating quite a bit of work for many PCB engineers as the materials required to keep up with the speed, frequency, and latency requirements need to be defined and qualified. Solder mask, for example, now becomes a truly additive process. Read on to find out how and why.

Recent Advances in X-ray Technology: SMTA Webinar Recap

08/12/2019 | Pete Starkey, I-Connect007
Technical Editor Pete Starkey recently attended a webinar on advances in X-ray technology and its applications in the electronics industry, as presented by Keith Bryant, Chair of SMTA Europe, on behalf of SMTA India. Here are the highlights of the webinar.

Advancement of SPI Tools to Support Industry 4.0 and Package Scaling

08/06/2019 | A. Prasad, L. Pymento, S.R. Aravamudhan, and C. Periasamy, Intel Corp.
This paper evaluates the current state of inline SPI tools from multiple vendors for solder paste measurement accuracy and capability. It discusses a measurement capability analysis that was carried out against a golden metrology tool across a range of volume deposits, and highlights the results from the study.



Copyright © 2019 I-Connect007. All rights reserved.