Bumping of QFNs/LGAs and Other Leadless Devices for More Consistent Rework


Reading time ( words)

The Challenge

Leadless devices are now the greatest package style by volume (Yole Development Market Survey) being placed by electronics assemblers worldwide. These packages, due to a variety of factors, are challenging to rework. Among the greatest challenges this package presents are the solder voiding primarily on the ground plane, the inability to clean underneath the devices post rework, and the difficulty in getting similar standoff heights on both the IO and center ground. These challenges along with their increasing complexity and ever smaller package sizes challenge even the most skilled rework technicians.

In addition to the above rework challenges, the package style itself remains very difficult to inspect post reflow for a variety of reasons. As there are rarely any visible solder joints due to in most instances a lack of a solderable sidewall on the IO pads of the device, as well as the very low standoff distances between the bottom of the device and the PCB, there is very little visual inspection which can occur. This means that the reliance on a skilled x-ray technician as well as a capable x-ray system is in order.

Types of Rework Methods Available

Of the various methods for reworking leadless devices, the bumping method (Figure 1), when appropriate for the board and part at hand, is the process with the greatest first pass yield, the one with the greatest standoff distance for cleaning flux residue from underneath the device and the one with the greatest assurance of minimizing voiding.

Wettermann-Figure1-9Aug16.jpg

Figure 1: Bumped leadless device prior to placement.

"Bumped" 2 x 2mm QFN Package, 0.5mm pitch, 0.2mm Wide Pads

There are numerous methods being used to rework leadless devices; either guided by the older IPC 7711 5.4.1 process guidelines or by the newest stenciling techniques. The older of these methods includes solder paste printing on the site location of the PCB followed by the placement and reflow of the device. The newer methods including IPC 7711 procedures 5.8.1.1 and 5.8.1.2 includes the device pads being “bumped” followed by their placement. The device, post “bumping”, can be placed using a rework system using paste flux or with a properly-designed “capture” stencil which has apertures that can locate and capture the “bumps” on the PCB.

Both of these latter methods for reworking leadless devices were popularized using polyimide stencils. In these methods, a polyimide stencil is placed over the land patterns on the bottom of the device. Solder paste is then squeegeed in to the apertures. The device is then reflowed. Post reflow, the stencil is peeled off leaving “bumps” on the bottom of the device (mini metal stencils can also be used when appropriate). Because the reflow is done in air, the flux volatiles can escape, thereby having the “bumped” part nearly free of voids. In addition, these stencils are thicker than the initial manufacturing stencils meaning that the final standoff height is greater when compared to traditional printing and placement. This bumping technique also greatly simplifies placement of the leadless device as a lower-skilled technician or even first-timer, when following the instructions properly, can produce the “bumps” for placement.

To read this entire article, which appeared in the August 2016 issue of SMT Magazine, click here.

Share

Print


Suggested Items

Advancement of SPI Tools to Support Industry 4.0 and Package Scaling

08/06/2019 | A. Prasad, L. Pymento, S.R. Aravamudhan, and C. Periasamy, Intel Corp.
This paper evaluates the current state of inline SPI tools from multiple vendors for solder paste measurement accuracy and capability. It discusses a measurement capability analysis that was carried out against a golden metrology tool across a range of volume deposits, and highlights the results from the study.

Practical Implementation of Assembly Processes for Low Melting Point Solder Pastes (Part 2)

07/24/2019 | Adam Murling, Miloš Lazić, and Don Wood, Indium Corporation; and Martin Anselm, Rochester Institute of Technology
In the last three to five years, there has been a resurgence of interest in the use of low melting point alloys for SMT applications. Typically, the compositions are around the eutectic bismuth-tin alloy, perhaps with additions of other elements to increase the robustness of certain alloy properties. Now, there are several new products on the market and numerous ongoing reliability projects in industry consortia.

The Four Things You Need to Know About Test

07/24/2019 | Neil Sharp, JJS Manufacturing
The electronics manufacturing process can often be extremely complex, and the costs associated with product recalls can be astronomical. A robust approach to test is key to ensuring the quality of your product and the satisfaction of your end user.



Copyright © 2019 I-Connect007. All rights reserved.